Bài 4: Tính nhanh
1/1 x2 + 1/ 2 x 3 + 1/ 3 x 4 + ................. + 1/ 2013 x 2014
bài 1)trung bình cộng các giá trị x thỏa mãn 4(x-1)^2=x^2
bài 2)\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+.............+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{2014}+\frac{1}{2015}}\)
2) xét tử ta có
2014+2013/2+2012/3+...+2/2013+1/2014
=(1+2013/2)+(1+2012/3)+...+(1+2/2013)+(1+1/2014)+1
=2015/2+2015/3+...+2015/2013+2015/2014+2015/2015
=2015(1/2+1/3+...+1/2013+1/2014+1/2015) (1)
mà mẫu bằng 1/2+1/3+1/4+...+1/2014+1/2015 (2)
từ (1),(2)=> phân thức trên =2015
Tính A= 1/2 x 2/3 x 3/4 x ... x 2013/2014 x 2014/2015
a)S = 1 + 1/3 + 1/9 + 1/27 + ..................... + 1/2187
b)S = 1 + 1/2 + 1/4 + 1/8 + ..................... + 1/128 + 1/256
c)A = 1 + 2 + 4 + 8 + ..................... + 4096 + 8192
d)1/1 x2 + 1/ 2 x 3 + 1/ 3 x 4 + ................. + 1/ 2013 x 2014
h)A = 1/1 x3 + 1/ 3 x 5 + 1/ 5 x 7 + ................. + 1/ 2013 x 2015
bai2a)1/ 2 x (1 + 2) + 1/ 2 x (1 + 2 + 3) + ............ + 1/2 x (1 + 2 + 3 + ....... + 9)
ai nhanh tick đúng nha
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
bài 7:tính
A=1-2+3-4+5-6+......+2015-2016
B=1+2-3-4+5+6+......+2013+2014-2015-2016
C=1-4-7-10-......-100
bài 8:tìm x thuộc z biết:
a,x.(x+2)=0
b,(x+2).(x-4)=0
Tính A = ( 1- 1/2 ) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x ... x ( 1 - 1/2013 ) x ( 1- 1/2014 )
tìm x biết (1+1/2+1/3+1/4+.........+1/2013)x+2013=2014/1+2015/2+2016/3+.........+4026/2013
giúp mik vs
nếu đầu bài sai thì sửa hộ mik luôn nha
phạm ngọc anh
bạn xét từng vế là ra đáp án ngay
E=(1/1/2.xy^2)(1/1/3.x^2.y^3)(1/1/4.x^3.y^4).....(1/1/2014.x^2013.y^2014)
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2
tính bằng cách thuận tiện nếu có thể: ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 1 + 1/3 - 4/3)
( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 1 + 1/3 - 4/3)
=( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 4/3 - 4/3)
=( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x 0
=0
Ta có: \(\left(2013\cdot2014+2014\cdot2015+2015\cdot2016\right)\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(=\left(2013\cdot2014+2014\cdot2015+2015\cdot2016\right)\left(\dfrac{3}{3}+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
=0