Tìm cặp số tự nhiên N, (x,y) sao cho 49 - y2 = 12( x - 2001 )2
Làm ơn mk đang cần gấp ngay bâu zờ , PLEASEEEEEEE !!!
Tìm cặp số tự nhiên N , ( x ; y) sao cho 49 - y 2 = 12 ( x - 2001 )2 .
=>(x-2001)2\(\le\frac{49}{12}\approx4,08\)
=>(x-2001)2={0;1;4}
TH1: (x-2001)2=0
=>x=2001
=>y=7
TH2: (x-2001)2=1
\(\Rightarrow\hept{\begin{cases}x-2001=1\\x-2001=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=2002\\x=2000\end{cases}}\)
=>y2=37(loại)
TH3: (x-2001)2=4
\(\Rightarrow\hept{\begin{cases}x-2001=2\\x-2001=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=2003\\x=1999\end{cases}}\)
=>y2=1
=>y=1
Vậy (x;y)=(2001;7);(2003;1);(1999:1)
Tìm cặp số x,y tự nhiên sao cho: 49-y^2=12{x-2001}^2
ta có: 49 - y2 = 12(x - 2001)2
=> \(12\left(x-2001\right)^2\le49\\ \Rightarrow\left(x-2001\right)^2\le\frac{49}{12}\approx4\)
mà (x - 2001)2 là số chính phương
=> \(\left(x-2001\right)^2=\left\{0;1;4\right\}\)
nếu (x - 2001)2 = 0
=> x - 2001 = 0 => x = 2001
=> 49 - y2 = 0 => y2 = 49 \(\Rightarrow\left[\begin{matrix}y=7\\y=-7\left(loại\right)\end{matrix}\right.\)
nếu (x - 2001)2 = 1
\(\left\{\begin{matrix}x-2001=1\\x-2001=-1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=2002\\x=2000\end{matrix}\right.\)
\(\Rightarrow49-y^2=12\Rightarrow y^2=37\left(loại\right)\)
nếu (x - 2001)2 = 4
\(\Rightarrow\left\{\begin{matrix}x-2001=2\\x-2001=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=2003\\x=1999\end{matrix}\right.\)
\(\Rightarrow49-y^2=12.4=48\Rightarrow y^2=1\Rightarrow\left\{\begin{matrix}y=1\\y=-1\left(loại\right)\end{matrix}\right.\)
vậy ta có các cặp (x;y) là (2001;7), (2003;1), (1999;1)
1.Tìm các cặp số tự nhiên (x,y) thỏa mãn (x+1)y = x2 + 4
2. Tìm các cặp số nguyên dương n để n5 +1 chia hết cho n3 +1
Mọi người giúp mình với nhé. Mình đang cần gấp. Mình xin cảm ơn nhiều nhiều
tìm số tự nhiên x,y sao cho:
(2x+1).(y-5)=12
giải giúp mk nha. mk đang cần gấp.^-^. giải chi tiết nha. thank you
(2x+1)(y-5)=12
Vì x,y \(\in N\)
=> 2x+1;y-5 \(\in N\)
=> 2x+1, y-5 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2x+1 là số lẻ => \(2x+1\in\left\{\pm1;\pm3\right\}\)
Xét bảng
2x+1 | 1 | -1 | 3 | -3 |
y-5 | 12 | -12 | 4 | -4 |
x | 0 | -1(ko tm) | 1 | -2( ko tm) |
y | 17 | 4 | 9 | 1 |
Vậy các cắp (x,y) tm là (0;17), (1;9)
cảm ơn bn nha
tìm số tự nhiên x,y sao cho:
(2x+1).(y-5)=12
các bn giúp mk nha. mk đang cần gấp. Nhớ giải chi tiết nha ^-^. thank you
\(\left(2x+1\right)\cdot\left(y-5\right)=12\)
<=>\(x=\frac{17-y}{2y-10}\)
thay x vào phương trình
=>\(\left(\frac{17-y+y-5}{y-5}\right)\cdot\left(y-5\right)=12\)
<=>\(\frac{12}{y-5}\cdot\left(y-5\right)=12\)
<=>\(12=12\)(Luôn đúng khi và chỉ khi y khác 5 )\(y\ne5,y\inℝ\)
giả sử thay y=1 ta có
=>\(2x=\frac{12}{1-5}-1\)
<=>\(2x=-4\)
=>\(x=-2\)
Vậy \(x=-2\)và \(y=1\)
tìm 2 số tự nhiên x,y sao cho : (2x+1)(y^2-5)=12
Lời giải:
$x,y$ tự nhiên
$(2x+1)(y^2-5)=12$.
$\Rightarrow 2x+1$ là ước của $12$
$x\in\mathbb{N}$ kéo theo $2x+1$ là số tự nhiên lẻ nên $2x+1$ là ước tự nhiên lẻ của $12$
$\Rightarrow 2x+1\in\left\{1; 3\right\}$
Nếu $2x+1=1$:
$y^2-5=\frac{12}{1}=12\Rightarrow y^2=17$ (không thỏa mãn do $y$ tự nhiên)
Nếu $2x+1=3$
$\Rightarrow x=1$
$y^2-5=\frac{12}{2x+1}=4\Rightarrow y^2=9=3^2=(-3)^2$
Do $y$ tự nhiên nên $y=3$
Vậy $(x,y)=(1,3)$
tìm số tự nhiên x , y biết x - 3 - y × ( x + 2 ) = 0
Các bạn gíp mk với, mk đang cần gấp
Ai làm nhanh vầ đúng mk tick cho
mk kko nhớ cách làm của lớp 6 nữa nhưng mmk sẽ thử chút sai thì đừng ném đá hé!!!!
\(x-3-y(x+2)=0\)
do \(x,y\in \mathbb{N}\)
nên \(\Rightarrow\hept{\begin{cases}x-3=0\\y\left(x+2\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=0\end{cases}}\)
do x,y là số tự nhiên nha! mk viết rồi mà nó ko hiển thị
Bạn mo chi mo ni ơi cho mk hỏi tại sao x-3 lại = 0
Có thể x - 3 bằng các số khác mà
1, Tìm các số tự nhiên x và y, sao cho: x+6=y.(x+1)
2, Tìm các số tự nhiên n sao cho n+3 chia hết cho n+1
3, Tìm số tự nhiên n biết: 1+2+3+4+5+...+n=465
mọi người giúp mk vs
mk cần gấp
tìm cặp số (x,y) nguyên sao cho: x(x+1)=y^2 +1
Giải nhanh giúp mk vs mk cần gấp, cảm ơn nhiều
Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.
Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)
\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)
\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)
Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)