Cho điểm M nằm trong tam giác ABC. Chứng minh rằng trong 3 đoạn thẳng MA,BM,MC độ dài 1 đoạn luôn nhỏ hơn tổng 2 đoạn còn lại. vẽ hình nữa nha
Cho điểm M nằm bên trong tam giác đều ABC. Chứng minh rằng trong ba đoạn thẳng MA, MB, MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
mình nha
xét tgiac AMB có MA<MB+AB (1)
xét tgiac AMC có MA< MC +AC (2)
xét tgiac MBC có BC< MB + MC (3)
cộng 2 vế của (1) và (2) ta có : 2MA < MB+MC+AB+AC
<=> MA <(MB+MC+AB+AC)/2
(mà tgiac ABC đều =>AB+AC=2BC)
<=>MA<(MB+MC+2BC)/2
<=>MA<(MB+MC)/2+BC(4)
từ (3) => (MB+MC)/2+BC <MB+MC(5)
từ (4) và (5) => MA<MB+MC (đpcm)
Cho một điểm M nằm bên trong tam giác đều ABC. Chứng minh rằng trong ba đoạn thẳng MA, MB, MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia.
Cho tam giác ABC. Lấy M là một điểm nằm trong tam giác
a) Chứng minh tổng 3 đoạn thẳng (MA+MB+MC) lớn hơn một nửa chu vi tam giác ABC
b)Lấy E là trung điểm đoạn MC. Vẽ EF vuông góc MC tại E. (F thuộc AC)
Chứng minh FM=FC
c)Chứng minh AC > AM
Vẽ luôn hình giúp mình
Help, help:
Cho M nằm trong tam giác đều ABC. Chứng minh rằng trong ba đoạn MA, MB, MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia
Nếu M nằm trong tam giác ABC thì giả sử BM là cạnh lớn nhất
Ta có : BM luôn nhỏ hơn BC và BA (lớn nhất là bằng BC và BA chỉ xảy ra khi M trùng với A và C)
Nên BM < AC (1)
Xét tam giác MAC theo tính chất của 1 tam giác thì:
MA + MB > AC ( tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh càn lại) (2)
từ (1) và (2) => MA+MC > BM
tương tự vs bất cứ cạnh nào trong 3 tam giác: MA,MB,MC ta đều cm như vậy
Nếu M nằm trong tam giác ABC thì giả sử BM là cạnh lớn nhất
Ta có : BM luôn nhỏ hơn BC và BA (lớn nhất là bằng BC và BA chỉ xảy ra khi M trùng với A và C)
Nên BM < AC (1)
Xét tam giác MAC theo tính chất của 1 tam giác thì:
MA + MB > AC ( tổng 2 cạnh của 1 tam giác luôn lớn hơn cạnh càn lại) (2)
từ (1) và (2) => MA+MC > BM
tương tự vs bất cứ cạnh nào trong 3 tam giác: MA,MB,MC ta đều cm như vậy
Cho điểm M nằm trong tam giác đều ABC . CMR 3 đoạn thẳng MA,MB,Mc đoạn lớn nhất nhỏ hơn tổng 2 đoạn còn lại
1. Cho tứ giác ABCD, gọi M là trung điểm của AD. N là trung điểm của BC.
Chứng minh: a) 2MN bé hơn hoặc = AB+CD
b) trong trường hợp dấu = xảy ra, tứ giác ABCD là hình gì
2. Cho tam giác abc đều, M là điểm nằm trong tam giác, qua m kẻ các đường thẳng // vs ab,//vsbc,//ac cắt ab,ac,bc tại e,d,f
Chứng minh:a, các tứ giác bfmd, cdme, aemf là hình thang cân
b, trong 3 đoạn ma,mb,mc thì đọ dài một đoạn lớn nhất nhỏ hơn tổng độ dài 2 đoạn còn lại
Cho tam giác đều ABC và một điểm M bất kì. Chứng minh rằng trong ba đoạn thẳng MA, MB, MC, mỗi đoạn thẳng không lớn hơn tổng của hai đoạn thẳng kia.
Các bạn giúp mình nha.
Cho tam giác đều ABC , điểm M nằm trong tam giác đó. Qua M kẻ đường thẳng song song với AC và cắt BC tại D. Kẻ đường thẳng song song với AB và cắt AC ở E, kẻ đường thẳng song song với BC và cắt AB tại F. Chứng minh rằng:
a) BFMD,CDME,AEMF là các hình thang cân
b) DME=EMF=DMF
c) Trong 3 đoạn thẳng MA,MB,MC đoạn lớn nhất nhỏ hơn tổng hai đoạn kia
Cho hình thang cân ABCD (AB//CD)và 1 điểm M tùy ý nằm trong hình thang. Chứng minh rằng luôn dựng được 1 tứ giác nội tiếp hình thang cân ABCD mà độ dài các cạnh của tứ giác bằng độ dài các đoạn thẳng MA, MB, MC, MD .
đây là hình vẽ , mình dựng hình phụ . mình có viết được một chút đó là :
Qua M kẻ AJ//IH ; AI//JK .
nối IJ ; IK; KH ;KJ
ta có AB//CD =>IM//AJ => tứ giác AIMJ là hình thang cân
CÁC BẠN GIÚP MÌNH LÀM TIẾP VỚI Ạ!!