Tìm các số nguyên a,b,c thỏa mãn các điều kiện: a<b ,a+3=b+c , a^2=b^2+c^2+1
Tìm các số nguyên tố a, b, c thỏa mãn điều kiện: a.b.c = 3(a+b+c)
Ta có abc = 3. (a+b+c)
⇒
⇒abc chia hết cho 3
Giả sử a chia hết cho 3. Do a là số nguyên tố
⇒
⇒ a=3
3bc=3(3+b+c)
⇒
⇒ bc=3+b+c
bc-b = 3+c
⇒
⇒ b(c-1) = 4+(c-1)
⇒
⇒ (b-1)(c-1) = 4
⇒
⇒ (b,c)
∈
∈ {(3,3);(2,5)}
Vậy (a,b,c
∈
∈ {(3,3,3) ; (2,3,5)}
Tìm các số nguyên tố a,b,c thỏa mãn điều kiện
a.b.c=3(a+b+c)
Ta có abc = 3. (a+b+c) \(\Rightarrow\)abc chia hết cho 3
Giả sử a chia hết cho 3. Do a là số nguyên tố \(\Rightarrow\) a=3
3bc=3(3+b+c) \(\Rightarrow\) bc=3+b+c
bc-b = 3+c \(\Rightarrow\) b(c-1) = 4+(c-1) \(\Rightarrow\) (b-1)(c-1) = 4
\(\Rightarrow\) (b,c) \(\in\) {(3,3);(2,5)}
Vậy (a,b,c) \(\in\) {(3,3,3) ; (2,3,5)}
Tìm các số nguyên tố a ; b ; c thỏa mãn điều kiện : a.b.c = 3(a+b+c)
tìm các số nguyên a,b,c thỏa mãn 3 điều kiện sau : a+b= 11; a+c= 2 ; b+c=3
Tìm các số nguyên tố a ; b ; c thỏa mãn điều kiện : a.b.c = 3(a+b+c)
Bạn clink chuột vào đây có bài này tớ làm rồi Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Cảm ơn Đinh Tuấn Việt nhiều!!!!!!!!!!
Tìm GTNN của các phân số có dạng (a+b)/a*c+b*d , trong đó a,b,c,d là các số nguyên dương thỏa mãn điều kiện a+b=c+d=2006
tìm số nguyên dương a, b, c thỏa mãn đồng thời các điều kiện √(a-b+c) =√a -√b +√c và 1/a +1/b +1/c =1
vì a-b+c => 3-3+3=3 và 1/3+1/3+1/3=3/3=1 =>a,b,c=3
Tìm tất cả các bộ số nguyên dương ( a, b, c, d) thỏa mãn đồng thời các điều kiện sau:
ab=c+d và a+b=cd
Tìm các số nguyên tố a, b thỏa mãn điều kiện: 5/a - b/3 = 1/6
Tìm các số nguyên a,b,c thỏa mãn điều kiện:
a+b=5
b+c=16
c+a=-19
a+b=5
b+c=16
c+a=-19
=> a+b+c=(5+16+-19):2=1
=> c=1-5=-4
=> a=1-16=-15
=> b=16-(-4)=20
, thanhks.
a+b=5
=>a=-15;b=20
b+c=16
=>b=20 ;c=-4
c+a=-19
=>a=-15;c=-4