Chứng minh 20x - 1 là hợp số với x nguên, x>1.
3cho P và 8P-1 là số nguên tố,chứng minh 8P-1 là hợp số (P>3)
Chứng minh rằng với mọi số nguên n thì: n^2 (n+1) + 2n (n+1) chia hết cho 6
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2.3 = 6
Vậy ta được điều phải chứng minh
n2(n+1)+2n(n+1) chia hết cho 6.
Ta có:n2(n+1)+2n(n+1)
=(n+1) (n2+2n)
=n+1.n(n+2)
=n.(n+1)(n+2)
Vì n;(n+1);(n+2) là ba số tự nhiên liên tiếp (với mọi số nguyên n) nên:
n.(n+1)(n+2) chia hết cho 2
và n.(n+1)(n+2) chia hết cho 3
=>n.(n+1)(n+2)chia hết cho(2.3)
hayn.(n+1)(n+2) chia hết cho 6
Vậy n2(n+1)+2n(n+1) chia hết cho 6 với mọi số nguyên n(đpcm)
chứng minh x4+4x là hợp số với x là số tự nhiên lớn hơn 1
Tính Giá trị của biểu thức sau theo cách hợp lý
a) A= x^5-5x^4+5x^3-5x^2+5X-1
Với x=4
b) B=x^6-20x^5-20x^4-20x^3-20x^2-20x+3
Với x=21
a) Thay x = 4 vào biểu thức A :
A = 45 - 5.44+ 5.43 - 5.42 + 5.4 -1
= 3
b) Thay x = 21 vào B :
B = 216 - 20.215 - 20.214 -20.213 - 20.212 - 20.21+3
=24
a) Tìm giá trị nhỏ nhất của biểu thức: A=x^2+3x-5
b) Chứng minh rằng A(x)=1/120x^5 -1/24 x^4+1/14x^3+1/24x^2-1/20x nhận giá trị nguyên với mọi giá trị nguyên của x
\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
(2x+1)^2-3(x-1)^2-(x+1)(x-1) với x=-1/2
(X-2)(x^2+2x+4)-x^2(x+2) với x=-2
X^6-20x^5-20x^4-20x^3-20x^2-20x+3 với x=21
\(\left(2x+1\right)^2-3\left(x-1\right)^2-\left(x+1\right)\left(x-1\right)\)
\(=\left(2.\left(-\frac{1}{2}\right)+1\right)^2-3\left(-\frac{1}{2}-1\right)^2-\left(-\frac{1}{2}+1\right)\left(-\frac{1}{2}-1\right)\)
\(=-3\left(-\frac{9}{4}\right)-\frac{1}{2}.\left(-\frac{3}{2}\right)\)
\(=\frac{27}{4}+\frac{3}{4}=\frac{31}{4}\)
còn đâu tự lm nha !
Cho P(x)là 1 đa thức bậc ba với hệ số của x^3 là 1 số nguyên.
Biết rằng P(1999)=2000 , P(2000)=2001
Chứng minh rằng P(2001) - P(1998) là 1 hợp số
chứng minh rằng với k là số nguên dương và a nguyên tố lớn hơn 5 thì \(a^{4k}\)chia hết cho 240
cho đa thức bậc ba f(x) với hệ số x3 là 1 số nguyên dương và f(5)-f(3)=2022 chứng minh rằng f(7)-f(1) là hợp số
Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\left(a\inℤ^+\right)\)
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(3\right)=27a+9b+3c+d\)
\(\Rightarrow f\left(5\right)-f\left(3\right)=98a+16b+2c\)
Mà \(f\left(5\right)-f\left(3\right)=2022\) nên \(98a+16b+2c=2022\)
\(\Leftrightarrow49a+8b+c=1011\)
Lại có \(f\left(7\right)=343a+49b+7c+d\)
\(f\left(1\right)=a+b+c+d\)
\(\Rightarrow f\left(7\right)-f\left(1\right)=342a+48b+6c\) \(=6\left(57a+8b+c\right)\) \(=6\left(8a+1011\right)\) (vì \(49a+8b+c=1011\))
Mà do \(a\inℤ^+\) nên \(f\left(7\right)-f\left(1\right)\) là hợp số (đpcm)
công thức tổng quát: f(x)=x3 sdasdasdadasd