X> 1 , nên X+1 > 0, X+1 là số nguyên >1
Theo định lý Fermat ta có :
\(20^{X}\equiv 1 \pmod {X+1} \) \(\Rightarrow\) \(20^X -1 \equiv 0 \pmod{X+1}\) \(\Rightarrow\) \(20^X - 1 \) là hợp số
Vậy \(20^X -1\) hợp số với X nguyên, X>1
X> 1 , nên X+1 > 0, X+1 là số nguyên >1
Theo định lý Fermat ta có :
\(20^{X}\equiv 1 \pmod {X+1} \) \(\Rightarrow\) \(20^X -1 \equiv 0 \pmod{X+1}\) \(\Rightarrow\) \(20^X - 1 \) là hợp số
Vậy \(20^X -1\) hợp số với X nguyên, X>1
Với , biểu thức có giá trị rút gọn là ...
Đưa thừa số vào trong dấu căn: \(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x > \(\frac{1}{2}\))
Chứng minh \(\dfrac{10x^2+9x+4}{20x^2+20x+9}\) tối giản với n tự nhiên.
Đưa thừa số vào trong dấu căn:
a) \(-\frac{a}{b}\sqrt{\frac{b}{a}}\left(a>0,b>0\right)\)
b)\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}\) (x> \(\frac{1}{2}\)
c) \(\left(x-5\right)\sqrt{\frac{3}{25-x^2}}\)
d) \(\frac{x}{x-y}\sqrt{\frac{x-y}{x}}\)
chứng minh rằng không tồn tại 1 đa thức với hệ số nguyên P(x) thỏa mãn P(1)=23 và P(23)=84
Cho x= \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
Chứng minh x có giá trị là số nguyên.
Bài 1: Tính giá trị biểu thức: P=\(\sqrt{x+24+7\sqrt{2x-1}}+\sqrt{x+4-3\sqrt{2x-1}}\)
với\(\frac{1}{2}\le x\le5\)
Bài 2: Chứng minh rằng: P=\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)là 1 số nguyên
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
cho x,y,z là 3 số dương và không đồng thời bằng nhau. Chứng minh rằng: Nếu\(\sqrt{x}+\frac{1}{\sqrt{y}}=\sqrt{y}+\frac{1}{\sqrt{z}}=\sqrt{z}+\frac{1}{\sqrt{z}}\) thì xyz=1