cho pt X^3 - X-3=0 chứng minh Xo > căn bậc 5 của 12
Chứng tỏ pt sau vô nghiệm
a) x2+2x+3=0
b) Căn bậc hai x +1 = 2 căn bậc hai -x
Giải pt
Căn bậc 3 của (x-2) + căn bậc 3 của ( x+2)= căn bậc 3 của 50
Tìm x :
a) x2 = 7 với x2 > 0.
b) Căn bậc hai của x = 10.
c) Căn bậc hai của x - 2 = 12.
d) Căn bậc hai của x - 1 = 1/3.
e) Căn bậc hai của 2x + 5/4 = 3/2.
f) 1/2 - căn bậc hai của 1/2 - x/2 = 0.
Giúp mình với nhé
a) x = \(\sqrt{7}\)
b) x = + - căn 10
c) x = căn 14
d) x bằng 2 / căn 3
e) x = 1 / căn 8
f) x = 1 - căn 2 / 2
Giải pt
A) căn bậc 3 của 2x+1 + căn bậc 3 của X =1
B) Căn bậc 3 của x-2 +√x+1 =3
1. Tìm m để pt sau có nghiệm.
Căn bậc hai của[ (x^2)+x+1] -căn bậc hai của [(x^2)-x+1]=m.
2. Biện luận theo m số nghiệm pt.
Căn bậc hai (x-1) + căn bậc hai (3-x) - căn bậc hai [(x-1)(3-x)]=m
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của b+căn bậc ba của c
Cho ax^3=by^3=cz^3 và 1/x+1/y+1/z=1.
Chứng minh rằng:
Căn bậc 3 của ax^2+by^2+cz^2= căn bậc 3 của a+ căn bậc ba của bạn+căn bậc ba của c
Bài 2: Chứng minh các PT sau là PT bậc nhất một ẩn
a) (m2 + m + 1) x - 3 = 0
b) ( m2 + 2m + 3 ) x - m + 1 = 0
a: \(m^2+m+1=m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Do đó: Phương trình \(\left(m^2+m+1\right)x-3=0\) luôn là pt bậc nhất 1 ẩn
b: \(m^2+2m+3=\left(m+1\right)^2+2>0\)
Do đó: Phương trình \(\left(m^2+2m+3\right)x-m+1=0\) luôn là pt bậc nhất 1 ẩn
a, Ta có : \(m^2+m+1=m^2+m+\dfrac{1}{4}+\dfrac{3}{4}=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Vậy ta có đpcm
b, Ta có : \(m^2+2m+3=m^2+2m+1+2=\left(m+1\right)^2+2>0\)
Vậy ta có đpcm
cho X^2-2mx+4=0 có 2 nghiệm x1,x1 ko giải PT tính Căn bậc 3 x1 + căn bặc 3 x2