Cho M nằm trong tam gicas ABC. CMR: P/2<MA+MB+MC<P (P là chu vi tam giác ABC)
Cho tam giác ABC. M nằm trong tam giác đó. CMR: góc BMC= ABM+ACM+BAC
kì , mk lm mà sao nó k ra j hết?????
mk lm lai nha
xét tam giác ABM có BME tại đỉnh M nên BME=MBA+MAB
CME=MAC+MCA
BME+CME=MBA+MAB+MAC+MCA
---->BMC=ABM+ACM+BAC(đpcm)
Cho hình tam giác ABC có AD = 1/3 AC, BE = 1/2 BD, diện tích tam gicas EBC là 1,2cm2. Tính diện tích tam giác ABC
cho tam giác abc va điểm m nằm trong tam giác. CMR MB+MC<AB+AC
cho tam giác ABC và điểm M nằm trong tam giác CMR : 1/2 AB+AC+BC<MA+MB+MC<AB+AC+BC
Cho tam giác ABC Có góc B = 75 độ, góc C = 60 độ. Điểm M nằm trong tam giác ABC sao cho tam giác MBC vuông cân tại M. CMR: MA =MB
Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!
C/m:
Từ giả thiết ta có:
\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\) \(\left(.\right)\)
\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)
\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)
Giả sử \(MA\ne MB\)ta xét 2 trường hợp:
T/ hợp 1: \(MA< MB\)
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)
Nối MA.
Để chứng minh MA =MB. Ta dùng phản chứng.
G/s: \(MA\ne MB\)
Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)
Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)
Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)
+) TH1: MA> MB=MC
Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)
Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)
+) TH1: MA< MB=MC
Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)
Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)
=> Điều giả sử là sai
=> MA=MB
Làm tiếp nè:
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A_2}\)( quan hệ góc - cạnh đối diện )
Vì \(MC=MB\)nên \(MA< MC\)
Do đó: \(\widehat{C_2}< \widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))
Suy ra: \(\widehat{B}_2+\widehat{C_2}< \widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0< \widehat{BAC}\): trái với \(\left(.\right)\)
T/hợp 2: \(MA>MB\)
Xét \(\Delta MAB,\)vì \(MA>MB\)nên \(\widehat{B_2}>\widehat{A_2}\)( quan hệ góc - cạnh đối diện )
Vì \(MC=MB\)nên \(MA>MC\)
Dó đó: \(\widehat{C_2}>\widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))
Suy ra: \(\widehat{B}_2+\widehat{C_2}>\widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0>\widehat{BAC}\): trái với \(\left(.\right)\)
Vậy điều giả sử \(MA\ne MB\)là sai, hay \(MA=MB\)
Bài làm của mk hay của Cô Linh Chi đều đc nha !
Cho tam giác ABC và điểm M nằm trong tam giác. CMR góc BMA lớn hơn góc BAC.
Cho tam giac ABC vuông tại A. Một điểm M nằm trong tam giác. CMR: tam giác MBC là tam giác tù.
Cho tam giác ABC , điểm M nằm trong tam giác sao cho MB < MC . CMR : góc AMB > góc AMC
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cho tam giác abc điểm m nằm trong tam giác sao cho AB= Am cmr AB < AC
Cái này lên kiếm trên Google là thấy nhiều bài lắm đấy bạn à