Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yumi Vũ
Xem chi tiết
Nguyễn Ngọc Quý
28 tháng 2 2016 lúc 10:43

3a/2 = 2b/5 nên a/2/3 = b/5/2

áp dụng tính chất dãy tỉ số bằng nhau ta có:

a/2/3 = b/5/2 = a+b/2/3 + 5/2 = 19/19/6 = 6

Vậy a = 6 . 2/3 = 4

Vậy b = 6 . 5/2 = 15

2a - 3b = 2 . 3 - 3 . 15 = -39

bui huynh nhu 898
28 tháng 2 2016 lúc 10:47

=>\(\frac{6a}{4}=\frac{6b}{15}\)

áp dụng dãy tỉ số = nhau 

6a+6b/1+15

6(a+b) / 19=6

=> 6a =6.4=24

a=4

=> 6b=6.15=90

b=15

2a-3b=2.4-3.15=8-45=-37

lion messi
Xem chi tiết
Nhật Hạ
18 tháng 3 2020 lúc 17:09

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

Khách vãng lai đã xóa
Phạm QUốc Trường
Xem chi tiết
TNT học giỏi
22 tháng 3 2018 lúc 20:49

a=4

b=6

~~ chúc bạn học tốt ~~

Phạm QUốc Trường
22 tháng 3 2018 lúc 20:50

bố mày cần cm

╰Nguyễn Trí Nghĩa (team...
9 tháng 2 2020 lúc 16:23

+)Theo bài:(3a+2b).(2a+3b)\(⋮\)5

=>[(3a+2b).(2a+3b)]2\(⋮\)52

=>[(3a+2b).(2a+3b)].[(3a+2b).(2a+3b)]\(⋮\)25

Mà[(3a+2b).(2a+3b)].[(3a+2b).(2a+3b)]\(⋮\)25

=>[(3a+2b).(2a+3b)]\(⋮\)25 hoặc [(3a+2b).(2a+3b)]\(⋮\)25

Mà [(3a+2b).(2a+3b)]=[(3a+2b).(2a+3b)]

=>[(3a+2b).(2a+3b)]\(⋮\)25(đpcm)Vậy[(3a+2b).(2a+3b)]\(⋮\)25Chúc bn học tốt   
Khách vãng lai đã xóa
Cao Thị Linh Đan
Xem chi tiết
Hoàng Minh Hiếu
1 tháng 3 2020 lúc 15:24

a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5

mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)

b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn

(a,b).[a,b]=a.b=d.d.6

a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1

Khách vãng lai đã xóa
Nguyễn Thị Thu Hải
Xem chi tiết
Đặng Cường Thành
27 tháng 3 2020 lúc 22:38

Vì 5 là 1 số nguyên tố ⇒ Ít nhất 1 trong 2 số (3a+2b) và(2a+3b) phải chia hết cho 5.

Không mất tính tổng quát, giả sử (3a+2b) ⋮ 5

5(a+b) đương nhiên chia hết cho 5 ⇒5(a+b)-(3a+2b) ⋮ 5

Hay (2a+3b) ⋮ 5

Vậy, nếu (3a+2b)*(2a+3b) ⋮ 5 thì (3a+2b)*(2a+3b) ⋮ 25 (ĐPCM)

Khách vãng lai đã xóa
-..-
Xem chi tiết
Nguyễn Hải Anh
Xem chi tiết
Phạm Thảo Linh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Phạm Ngọc Tấn
3 tháng 8 2023 lúc 11:34

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.