Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
long Bui
Xem chi tiết
Nghĩa Nguyễn
Xem chi tiết
Phạm thị thu thảo
Xem chi tiết
Nhung Tran
Xem chi tiết
phuong
1 tháng 11 2015 lúc 16:01

\(\frac{y+z+1+x+z+1+x+y-3}{x+y+z}\)=\(\frac{2\left(X+Y+Z\right)}{x+y+z}\)=2  =>x+y+z=\(\frac{1}{2}\)   tu lam di nhe

Phương Anh Võ Thị
Xem chi tiết
Nhung Tran
Xem chi tiết
Vui ghê ta
Xem chi tiết
Trương Mỹ Hạnh
Xem chi tiết
Thắng Nguyễn
16 tháng 2 2017 lúc 16:34

Áp dụng BĐT AM-GM ta có:

\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)

Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:

\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Nguễn Tùng Sơn
Xem chi tiết
Huỳnh Ngọc Lộc
23 tháng 11 2017 lúc 12:03

Hình như sai đề rồi bạn :

Có phải như thế này không :

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+y}\)

Ta có\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)

\(=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{2x+2y+2z+1+2-3}{x+y+z}\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Nên \(\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)

Ta lại có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=2\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)-z+1}{x}=\dfrac{\left(x+y+z\right)-y+2}{y}=\dfrac{\left(x+y+z\right)-z-3}{z}=2\)

\(\Rightarrow\dfrac{\dfrac{1}{2}-x+1}{x}=\dfrac{\dfrac{1}{2}-y+2}{y}=\dfrac{\dfrac{1}{2}-z-3}{z}=2\)

\(\Rightarrow\dfrac{\dfrac{3}{2}-x}{x}=\dfrac{\dfrac{5}{2}-y}{y}=\dfrac{-z-\dfrac{5}{2}}{z}=2\)

\(\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\dfrac{3}{2}-x}{x}\\\dfrac{\dfrac{5}{2}-y}{y}\\\dfrac{-z-\dfrac{5}{2}}{z}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{2}-x\\2y=\dfrac{5}{2}-y\\2z=-z-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{5}{2}\end{matrix}\right.\)