tim xy biết y+z +1/x =x+z+2/y=x+y-3/z=1/x+y+z
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
tim x; y; z biết y+z+1/x=x+z+2/y=x+y-3/z=1/x+y+z
1.Tim tat ca cac cap so nguyên sao cho x^3 -x^2y+3x-2y-5=0
2. Cho0<x,y,z =<1 . CMR : x/(1+y+xz) + y/(1+z+xy) +z/(1+x+yz) =< 3/(x+y+z)
Tim x,y,z biet:
a, xy=z ; yz=4x ; zx=9x
b, \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1+x+z+1+x+y-3}{x+y+z}\)=\(\frac{2\left(X+Y+Z\right)}{x+y+z}\)=2 =>x+y+z=\(\frac{1}{2}\) tu lam di nhe
a)Tìm x,y thuộc z biết rằng (y+1).(xy-1)=3
b)tìm các số x,y,z biết rằng x+y=2 ;y+z=3 ;z+x=-5
Tim x,y,z biet:
a, \(xy=z;yz=4x;zx=9y\)
b, \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
tim x,y,z biet y+z+1=x+z+2/y=x+y-3/2=1/x+y+z
√xy + √yz + √zx =1 ;x,y,z>0
tim min A = X^2/(X+y) + y^2/(y+z) + z^2/z+x
ai lam dk mk tick cho
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)
Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:
\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
tim x,y,z biết
\(\dfrac{y+a+9}{x}=\dfrac{x+z+2}{y}=\dfrac{x+z-3}{z}=\dfrac{1}{x+y+z}\)
Hình như sai đề rồi bạn :
Có phải như thế này không :
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+y}\)
Ta có\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)
\(=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
\(=\dfrac{2x+2y+2z+1+2-3}{x+y+z}\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Nên \(\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)
Ta lại có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=2\)
\(\Leftrightarrow\dfrac{\left(x+y+z\right)-z+1}{x}=\dfrac{\left(x+y+z\right)-y+2}{y}=\dfrac{\left(x+y+z\right)-z-3}{z}=2\)
\(\Rightarrow\dfrac{\dfrac{1}{2}-x+1}{x}=\dfrac{\dfrac{1}{2}-y+2}{y}=\dfrac{\dfrac{1}{2}-z-3}{z}=2\)
\(\Rightarrow\dfrac{\dfrac{3}{2}-x}{x}=\dfrac{\dfrac{5}{2}-y}{y}=\dfrac{-z-\dfrac{5}{2}}{z}=2\)
\(\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\dfrac{3}{2}-x}{x}\\\dfrac{\dfrac{5}{2}-y}{y}\\\dfrac{-z-\dfrac{5}{2}}{z}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{2}-x\\2y=\dfrac{5}{2}-y\\2z=-z-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{5}{2}\end{matrix}\right.\)