so sánh
\(2^{30}+3^{20}+4^{30}\)và \(3\cdot24^{10}\)
so sánh \(2^{30}+3^{20}+4^{30}và3\cdot24^{10}\)
so sánh \(2^{30}+3^{20}+4^{30}và3\cdot24^{10}\)
So sánh \(2^{10}\)+\(3^{20}\)+\(4^{30}\)và \(3\cdot24^{10}\)
1024+3486784401+1.152921505.\(10^{18}\)và 3.6.340338097.\(10^{13}\)
1.152921508.\(10^{18}\) , 1.902101429.\(10^{14}\)
v
Chúc bạn hoc giỏi
Ta có :
\(3.24^{10}=3.\left(2^3.3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{10}+3^{20}+4^{30}>3.24^{10}\)
Vậy \(2^{10}+3^{20}+4^{30}>3.24^{10}\)
_Chúc bạn học tốt_
so sánh \(^{4^{30}}\) và \(3\cdot24^{10}\)
so sánh \(2^{30}+3^{30}+4^{30}\)và \(3\cdot24^{10}\)
Chứng minh: \(\left(24^{54}\cdot54^{24}\cdot2^{10}\right)\) chia hết cho \(\left(72^{63}\right)\)
so sánh: $2^{30}+3^{20}+4^{10}$ và $3*24^{10}$
cái gì vậy
bạn mình đoạc ko hiểu
mình cũng chả biết
So sánh: a.2^300 và 3^200 b.2^300 + 3^20 +4^30 và 3 x 24^10
`a)2^{300}=(2^3)^100=8^100`
`3^200=(3^2)^100=9^100`
Vì `9^100>8^100`
`=>2^300<3^200`
`b)3xx24^10`
`=3.(3.8)^10`
`=3^{11}.8^10`
`=3^{11}.2^30`
`2^300=2^{30}.2^{270}`
`=2^{30}.8^{90}`
Vì `3^11<8^90`
`=>3^{11}.2^30<8^{90}.2^30=2^300`
`=>3xx24^{10}<2^300+3^20+4^30`
So sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
Xét \(A=2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(2^2\right)^{30}=8^{10}+27^{10}+2^{60}\)
\(B=3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(2^3\right)^{20}=9^{10}+36^{10}+2^{60}\)
Vì \(8^{10}< 9^{10},27^{10}< 36^{10}\)nên A<B
230 = 23.10= 810
330=33.10=2710
430=43.10=6410
Vế trái = 810 + 2710 + 6410
320=32.10=910
620=62.10=3610
820=82.10=6410
vế phải = 910 + 3610 + 6410
Vì 6410=6410 ; 3610 > 2710 ; 910 > 810
=> vế phải > vế trái
so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20
So sánh:
a) 5^300 và 3^500
b) (-16)^11 và (-32)^9
c) (2^2)^3 và 2^2^3
d) 2^30 + 2^30 + 4^30 và 3^20 + 6^20 + 8^20
e) 4^30 và 3×24^10
g) 2^0 + 2^1 + 2^2 + 2^3 +...+ 2^50 và 2^51