F= 1+3+3^2+3^3+...+3^99
Tìm chữ số tận cùng của F
Chứng tỏ rằng F chia hết cho 4
1) Cho S=1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
2) S= 5+5^2+5^3+5^4+...+5^96
a) Chứng minh S chia hết cho 126
b) Tìm chữ số tận cùng của S
- Giải giùm mình nha!
A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
a) Tính A
b) Chứng tỏ rằng 2A + 3 là lũy thừa của 3
c) Chứng tỏ rằng A chia hết cho 4; 13; 52
d) Tìm chữ số tận cùng của A
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
chứng tỏ rằng [7+1].[7+2] chia hết cho 3
chứng tỏ rằng [3^100+19^990] chia hết cho 2
abcabc có ít nhất 3 ước số nguyên tố
M=1+3^1+3^2+.......+3^30
Tìm chữ số tận cùng của M,từ đó suy ra M có phải là số chính phương không
cmr [7+1].[7+2] chia hết cho 3
=8x9
=72
72 chia hết cho 3
ĐCPCM
Ta có chú ý chẵn cộng chẵn bằng chẵn
lẻ cộng chẵn bằng lẻ
lẻ cộng lẻ là chẵn
mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn
=> mà số chẵn chia hết cho 2
ĐCPCM
3S=3+3^2+3^3+...+3^{31}
3S-S=3^{31}-1
2S=3^{4.7+3}-1
2S=81^7.27-1
2S=\overline{......1}.27-1
2S=\overline{......7}-1=\overline{......6}
S=\overline{........3}
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
1) CMR: (7+1)(7+2)\(⋮\)3
\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)
2) CMR: \(3^{100}+19^{990}⋮2\)
ta có: \(3^{100}\)có chữ số tận cùng là số lẻ
\(19^{990}\)có chữ số tận cùng là số lẻ
mà lẻ + lẻ = chẵn => đpcm
3) abcabc có ít nhất 3 ước số nguyên tố
ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13
Vậy...
4) Cho \(M=1+3^1+3^2+...+3^{30}\)
Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?
ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)
\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)
(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)
\(\Leftrightarrow2M=3^{31}-1\)
ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)
\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8
=>đpcm
Học tốt nhé ^3^
Bài 1: Cho S= 3 + 3^2 + 3^3 +...+ 3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1+2+2^2+2^3+...+2^17) chia hết cho 9
Bài 1: Cho S= 3 + 3^2 +3^3 +...+3^100. Chứng minh rằng S chia hết cho 4. Tìm chữ số tận cùng của S.
Bài 2: Chứng minh rằng: ( 1 + 2 + 2^2 + 2^3 +...+ 2^17 ) chia hết cho 9
a. Tìm tất cả các số tự nhiên n để: 3n + 9.n + 36 là số nguyên tố.
b. Tìm chữ số tận cùng của M= 41 + 42 + 43 + 44 + .........+ 42012 + 42013
c. Chứng tỏ rằng 102015 + 17 chia hết cho 9.
d. Cho hai số a; b nguyên tố cùng nhau. Chứng tỏ rằng: a+ b và a.b của chúng cũng là hai số nguyên tố cùng nhau.
e. Cho S=1 + 3 + 32 + 33 + ... + 399. Chứng tỏ 2S là lũy thừa của 3.
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
bài 3:cho M = 2 + 2^2 + 2^3 + ... +2^100
a,chứng tỏ rằng M chia hết cho 2
b,chứng tỏ rằng M chia hết cho 3
c,chứng tỏ rằng M chia hết cho 15
d,tìm chữ số tận cùng của M
e,tính M
cần gấppppppppppppppppppppp
Cho A = 1 + 3 + 32 + 33 + ... + 311
a) Chứng tỏ rằng A chia hết cho 5
b) Tìm chữ số tận cùng của A
A x 3 = 3 + 32 + 33+... + 312
A x 3 - A = 312 - 1
A x 2 = 312 - 1 = 531441 - 1 = 531440
A = 531440 : 2 = 265720
vậy A chia hết cho 5 và tận cùng của A bằng 0
a) = (1+3+32+33)+...+(38+39+310+311)
= (1+3+32+33)+(1.34....38)
=(1+3+32+33)+(1.34....38)
=40 +( 1.34.....38)
Vì 40 chia hết cho 5 => 40 + (1.34....38)
=> A chia hết cho 5
ta có 3A = 3 + 32 +... + 312
=> 2A = 312 - 1
ta có \(3^4\equiv1\left(mod5\right)\)\(\Rightarrow3^{12}\equiv1\left(mod5\right)\)\(\Rightarrow2A⋮5\)mà (2,5) = 1 => \(A⋮5\)
b)vì A có chẵn số hạng lẻ mà \(A⋮5\)nên A có tận cùng là 0
1.
a) Chứng tỏ rằng tổng:
21+22+23+.......+299+2100 chia hết cho 3
b) Tìm số dư khi chia tổng:
21+22+23+........+299+2100 cho 9
2. Cho một số chia hết cho 7 gồm 6 chữ số. Chứng minh rằng nều chuyển chữ số tận cùng lên đầu tiên , ta vẫn đưo85c số chia cho 7