Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Ngọc Bảo Trân
Xem chi tiết
Nashiro
Xem chi tiết
Sakuraba Laura
17 tháng 12 2017 lúc 11:01

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.

Vũ Văn Duong
Xem chi tiết

cmr [7+1].[7+2] chia hết cho 3

=8x9

=72

72 chia hết cho 3

ĐCPCM

   Ta có chú ý chẵn cộng chẵn bằng chẵn

                        lẻ cộng chẵn bằng lẻ

                        lẻ cộng lẻ là chẵn

mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn 

=> mà số chẵn chia hết cho 2

ĐCPCM

3S=3+3^2+3^3+...+3^{31}

3S-S=3^{31}-1

2S=3^{4.7+3}-1

2S=81^7.27-1

2S=\overline{......1}.27-1

2S=\overline{......7}-1=\overline{......6}

S=\overline{........3}

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

Khách vãng lai đã xóa
Tiến_Về_Phía_Trước
27 tháng 11 2019 lúc 19:54

1) CMR: (7+1)(7+2)\(⋮\)3

\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)

2) CMR: \(3^{100}+19^{990}⋮2\)

ta có: \(3^{100}\)có chữ số tận cùng là số lẻ

\(19^{990}\)có chữ số tận cùng là số lẻ

mà lẻ + lẻ = chẵn => đpcm

3) abcabc có ít nhất 3 ước số nguyên tố

ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13

Vậy...

4) Cho \(M=1+3^1+3^2+...+3^{30}\)

Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?

ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)

\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)

(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)

\(\Leftrightarrow2M=3^{31}-1\)

ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)

\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8

=>đpcm

Học tốt nhé ^3^

Khách vãng lai đã xóa
huynh dien do
Xem chi tiết
Huỳnh Rạng Đông
Xem chi tiết
Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Thúy Vy
11 tháng 12 2016 lúc 9:11

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

Phạm Đăng Cường
Xem chi tiết
emmoon
12 tháng 12 2023 lúc 22:57

co cai nit tu di ma tinh

 

Jenny Luu
Xem chi tiết
Trình Ánh Ngọc
7 tháng 5 2018 lúc 18:32

A x 3 = 3 + 3+ 33+... + 312

A x 3 - A = 312 - 1

A x 2 = 312 - 1 = 531441 - 1 = 531440

A = 531440 : 2 = 265720

vậy A chia hết cho 5 và tận cùng của A bằng 0

Lê Nguyễn Hằng
7 tháng 5 2018 lúc 18:51

a) = (1+3+32+33)+...+(38+39+310+311)

= (1+3+32+33)+(1.34....38)

=(1+3+32+33)+(1.34....38)

=40 +( 1.34.....38)

Vì 40 chia hết cho 5 => 40 + (1.34....38)

=> A chia hết cho 5

Nga Nguyễn
7 tháng 5 2018 lúc 19:00

ta có 3A = 3 + 32 +... + 312

=> 2A = 312 - 1

ta có \(3^4\equiv1\left(mod5\right)\)\(\Rightarrow3^{12}\equiv1\left(mod5\right)\)\(\Rightarrow2A⋮5\)mà (2,5) = 1 => \(A⋮5\)

b)vì A có chẵn số hạng lẻ mà  \(A⋮5\)nên A có tận cùng là 0

Nguyễn Thị Phương Thảo
Xem chi tiết