Chứng minh trong 1900 số tự nhiên liên tiếp có một số có tổng các chữ số chia hết cho 27.
Chứng minh rằng trong 1900 số tự nhiên liên tiếp có một số có tổng các chữ số chia hết cho 27.
Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế,ví dụ. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a x 1000) chia hết cho 27 ta có đ.p.c.m Giả sử s( a x 1000 ) chia cho 27 dư r với 1\(\le\) r \(\le\) 26, tức 1 \(\le\) 27 - r \(\le\) 26
Ta chọn số b mà 1 \(\le\) b \(\le\) 899 sao cho s( b ) = 27 - r
=> s( a x 1000 + b ) = s( a x 1000) + s( b ) = ( 27n + r ) + ( 27 - r ) = 27( n + 1 ) chia hết cho 27 \(\left(ĐPCM\right).\)
trong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000.
Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n
Xét 27 số : N000;N001;N002;...;N009;N019;...;N099;N199;...;N899
Có tổng các chữ số là : n;n+1;n+2;...;n+26
Sẽ luôn có 1 số chia hết 27
Suy ra ﴾đpcm﴿
Chứng minh rằng trong 1900 số tự nhiên liên tiếp có một số có tổng các chữ số chia hết cho 27
Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đ.p.c.m Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đ.p.c.m)
Trong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000. Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n
Xét 27 số :
N000;N001;N002;...;N009;N019;...;N099;N199;...;N899
Có tổng các chữ số là : n;n+1;n+2;...;n+26
Sẽ luôn có 1 số chia hết 27
Suy ra (đpcm)
chứng minh trong 1900 số tự nhiên liên tiếp luôn có số có tổng các chữ số chia hết cho 27
Chứng minh rằng trong 1900 số tự nhiên liên tiếp có 1 số tổng các chữ số chia hết cho 27.
rong 1000 số tự nhiên liên tiếp đầu tiên luôn có 1 số chia hết cho 1000. Gọi số đó là N000¯¯¯¯¯¯¯¯ luôn có tổng các chữ số là n
Xét 27 số :
N000;N001;N002;...;N009;N019;...;N099;N199;...;N899
Có tổng các chữ số là : n;n+1;n+2;...;n+26
Sẽ luôn có 1 số chia hết 27
Suy ra (đpcm)
xét 1000 số tự nhiên đầu tiên luân tồn tại 1 số chia hết cho 1000. Giả sử là A(A≤1000)
xét 27 số tự nhiên là:
A+1,A+2,A+3,...,A+9,A+19,A+29,...,A+99,A+199,A+299,...,A+899
**** cho anh nhé em
CMR trong 1900 số tự nhiên liên tiếp có 1 số có tổng các chữ số chia hết cho 27
CMR trong 1900 số tự nhiên liên tiếp có 1 số có tổng các chữ số chia hết cho 27
CMR : TRong 1900 số tự nhiên liên tiếp có 1 số có tổng các chữ số chia hết cho 27
CMR trong 1900 stn liên tiếp luôn tồn tại một số có tổng các chữ số chia hết cho 27
Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)
CMR: Trong 1900 STN liên tiếp có 1 số có tổng các chữ số chia hết cho 27
đó là số 999 vì 9+9+9=27
đáp án là 999 nha bạn