Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 19:32

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

Trần Thu Ha
Xem chi tiết
Vũ Ngọc Anh
Xem chi tiết
Vũ Ngọc Anh
Xem chi tiết
thiên dương Sát thủ mắt...
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2023 lúc 1:06

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

Phạm Quỳnh Anh
Xem chi tiết
Đỗ Ngọc Hải
13 tháng 2 2018 lúc 21:06

A C B D E H
Xét 2 tam giác AEC và tam giác HEB có:
\(\widehat{AEC}=\widehat{HEB}\left(=90^o\right)\)
AC=BH (giả thiết)
\(\widehat{CAE}=\widehat{BHE}\left(=\widehat{DHC}\right)\)
\(\Rightarrow\Delta AEC=\Delta HEB\left(ch.gn\right)\)
=> EC=EB (2 cạnh tương ứng)
=> tam giác ECB cân tại E
=> \(\widehat{B}=45^o\)
Đây chỉ là TH góc B nhọn, còn TH góc B tù thì làm tương tự tìm ra góc B=135 độ

Đỗ Ngọc Hải
13 tháng 2 2018 lúc 21:19

O A B D H y x
Lấy B thuộc Ox , A thuộc Oy sao cho OA=OB
Dùng compa vẽ đtron (O;OB) và (B;OB), 2 đường tròn cắt nhau tại D ,nối O với D 
Dùng compa vẽ đtron (D;R) và (B;R) (với R là bán kính bất kì), 2 đtron cắt nhau tại H, nối O với H
OD và OH chia góc ra làm 3 phần bằng nhau
 

Đỗ Ngọc Hải
16 tháng 2 2018 lúc 22:37

A B C D E
\(\widehat{BAD}=\alpha\Rightarrow\widehat{CAE}=90^o-\alpha\)
Ta có: Tam giác ABC vuông cân tại A => AB=AC
\(BD^2=\left(sin\left(\alpha\right).AB\right)^2=sin^2\alpha.AB^2\)
\(CE^2=\left(sin\left(90^o-\alpha\right).AC\right)^2=\left(cos\alpha.AC\right)^2=cos^2\alpha.AC^2\)
\(\Rightarrow BD^2+CE^2=sin^2\alpha.AB^2+cos^2a.AC^2=sin^2\alpha.AB^2+cos^2\alpha.AB^2=AB^2\left(sin^2\alpha+cos^2\alpha\right)=AB^2\)
Do AB không đổi nên BD2+CE2 không đổi (đpcm)
 

Lee Min Hoo
Xem chi tiết
HitRuu Zero
Xem chi tiết
Quynh Truong
Xem chi tiết
Nguyễn Bảo Châu
Xem chi tiết
Nguyễn Bảo Châu
25 tháng 1 2016 lúc 15:18

Làm ơn giúp mình đi mình đang cần gấp lắm

Ba Dấu Hỏi Chấm
28 tháng 2 2016 lúc 15:02

de thoi

1. 55 do

2. bc=10