cho tam giác ABC vuông tại A có góc C = 3 độ ; tia phân giác của góc A cắt BC tại D . Kẻ AH vuông góc với BC ( H thuộc BC )
a, tính góc ADH
b, so sánh góc HAD và góc HAB
c, so sánh góc ABC và góc HAC
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
1. Cho tam giác ABC cân tại A có góc A = 20 độ. Vẽ D trên nửa mặt phẳng bờ AC không chứa B sao cho tam giác BCD cân tại C và góc BCD = 140 độ. Tính góc ADC
2. Cho tam giác ABC cân tại A có góc BAC = 108 độ. D là điểm nằm trong tam giác ABC sao cho góc DBC = 12 độ, góc DCB = 18 độ. tính góc ADB
3. Cho tam giác ABC cân tại A, A = 100 độ. M nằm trong tam giác ABC sao cho góc MBC = 30 độ, góc MCB = 20 độ. Tính góc MAC
4. Cho tam giác ABC vuông tại A, vẽ AH vuông góc vs BC tại. Biết BH - HC = AC. tính các góc ABC, ACB
Câu 3 : 1. cho tam giác abc với góc a = 40 độ , góc b= 60 độ
a. tính góc c
b . kẻ AM là tpgiác của góc a . tính góc amb và góc amc
2. cho tam giác abc vuông tại a có góc c= 30 độ
a. tính góc B
b. kẻ AH vuông BC tại H trên tia đối của tia HA lấy điểm K sao cho HA=HK . chứng minh BA =BK
c. Chứng Minh CB là tia phân giác của góc ACK
Câu 3 : 1. cho tam giác abc với góc a = 40 độ , góc b= 60 độ
a. tính góc c
b . kẻ AM là tpgiác của góc a . tính góc amb và góc amc
2. cho tam giác abc vuông tại a có góc c= 30 độ
a. tính góc B
b. kẻ AH vuông BC tại H trên tia đối của tia HA lấy điểm K sao cho HA=HK . chứng minh BA =BK
c. Chứng Minh CB là tia phân giác của góc ACK
Ai trl nhanh nhất mik like ạ!
Cho tam giác ABC vuông tại A có góc B=60 °. Tia phân giác của góc ABCcho tam giác abc vuông tại a có góc b = 60 độ . tia phân giác của góc b cắt ac tại e , kẻ eh vuông góc đc tại h a) chứng minh tam giác abe = tam giác hbe b) hb=hc C) từ H kẻ đường thẳng song song với BE cắt AC ở K .c/m🔺AHK là tam giác đều d) gọi I là giao điểm của BA và HE. Chúng minh IE>EH
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
1) Cho tam iacs ABC , hai đg cao BD,CE cắt nhau tại H cho biết AC=BH . C/m tam giác ABC có góc B =45 độ hoặc 135 độ
2)dùng thước và compa để chia góc vuông cho trước thành 3 phần = nhau
3)Cho tam giác ABC vuông cân tại A , qua A vê đg thẳng d thay đổi , ve BD và CE cùng vuông góc d (DE thuộ d). Cmr BD^2+CE^2 ko đổi
4) Cho tam giác ABC có AB=1 , góc A =75 độ , góc B =60 độ . Trên mửa mp BC có chứa A ve tia Bz sao cho góc CBz =15 độ
a)C/m DC vuông góc BC
b)Tính tổng BC^2+CD^2
5) Tam giác ABC vuông cân tại A , trung tuyến AM (M tđ BC) . Cmr AE=CF
Xét 2 tam giác AEC và tam giác HEB có:
\(\widehat{AEC}=\widehat{HEB}\left(=90^o\right)\)
AC=BH (giả thiết)
\(\widehat{CAE}=\widehat{BHE}\left(=\widehat{DHC}\right)\)
\(\Rightarrow\Delta AEC=\Delta HEB\left(ch.gn\right)\)
=> EC=EB (2 cạnh tương ứng)
=> tam giác ECB cân tại E
=> \(\widehat{B}=45^o\)
Đây chỉ là TH góc B nhọn, còn TH góc B tù thì làm tương tự tìm ra góc B=135 độ
Lấy B thuộc Ox , A thuộc Oy sao cho OA=OB
Dùng compa vẽ đtron (O;OB) và (B;OB), 2 đường tròn cắt nhau tại D ,nối O với D
Dùng compa vẽ đtron (D;R) và (B;R) (với R là bán kính bất kì), 2 đtron cắt nhau tại H, nối O với H
OD và OH chia góc ra làm 3 phần bằng nhau
\(\widehat{BAD}=\alpha\Rightarrow\widehat{CAE}=90^o-\alpha\)
Ta có: Tam giác ABC vuông cân tại A => AB=AC
\(BD^2=\left(sin\left(\alpha\right).AB\right)^2=sin^2\alpha.AB^2\)
\(CE^2=\left(sin\left(90^o-\alpha\right).AC\right)^2=\left(cos\alpha.AC\right)^2=cos^2\alpha.AC^2\)
\(\Rightarrow BD^2+CE^2=sin^2\alpha.AB^2+cos^2a.AC^2=sin^2\alpha.AB^2+cos^2\alpha.AB^2=AB^2\left(sin^2\alpha+cos^2\alpha\right)=AB^2\)
Do AB không đổi nên BD2+CE2 không đổi (đpcm)
Chọn câu đúng nhất.1 .Cho ∆ ABC vuông cân tại A. vậy góc B bằng:A. 600B. 900C. 450D. 12002. Một tam giác là vuông nếu độ dài 3 cạnh của nó là:A. 2,3,4 B. 3,4,5 C. 4,5,6 D. 6,7,83. Một tam giác cân có góc ở đáy là 350 thì góc ở đỉnh có số đo là:A. 1000B. 1100C. 850D. 12004. Tam giác ABC có BC = 3cm ; AC = 5cm ; AB = 4cm. Tam giác ABC vuông tại đâu?A. Tại B B. Tại C C. Tại A D. Không phải là tam giác vuông5. Tam giác ABC có AB = AC = BC thì tam giác ABC là A. Tam giác nhọn B. Tam giác cân C. Tam giác vuông D. Tam giác đều6. Tam giác nào vuông nếu độ lớn ba góc kà:A. 300, 700, 800B. 200, 700, 900 C. 650, 450, 700D. 600, 600, 6007. Tam giác cân là tam giác có:A. Hai cạnh bằng nhau -B. Ba cạnh bằng nhau - C. Một góc bằng 600 - D. Một góc bằng 900
Bài 1: Cho tam giác MNP vuông tại M. Kẻ MH vuông góc với NP ( H thuộc NP )
a) Tìm các cặp góc phụ nhau trên hình
b) Tìm các cặp góc nhọn bằng nhau trên hình
Bài 2: Cho tam giác ABC có góc A = 60 độ , góc C = 50 độ. Tia phân giác của góc B cắt AC tại D. Tính góc ADB, CDB
Bài 3: Cho tam giác ABC, điểm M nằm trong tam giác đó. Tia BM cắt AC ở K
a) So sánh góc AMK và góc ABK
b) So sánh góc AMC và góc ABC
Bài 4: Cho tam giác ABC có góc A = 100 độ, góc B - góc C = 20 độ. Tính góc B, góc C
Bài 5: Cho tam giác ABC có góc B = 70 độ, góc C = 30 độ. Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC ( H thuộc BC )
a) Tính góc BAC
b) Tính góc ADH
c) Tính góc HAD
BÀI 3 Cho tam giác ABC vuông tại C có góc A=60 độ và đường phân giác của góc BAC cắt BC tại E . Kẻ EK vuông góc AB tại K (K thuộc AB).Kẻ BD vuông góc với AE tại D (D thuộc AE ) chứng minh a) TAm giác ACE bằng tam giác AKE b) AE là đường trung trực của đoạn thẳng CK c)KA=KB d)EB>EC
Bài 1. Cho tam giác ABC cân tai A có góc A =70 độ. Tính số đo độ góc C
Bài 2. Cho tam giác ABC vuông tại A, có góc B =60 độ và AB=5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a, Chứng minh tam giác ABD=tam giác EBD
b, Chứng minh tam giác ABE là tam giác đều
c, Tính độ dài cạnh BC
Bài 3. Cho tam giác ABC cân tại A có AB =5cm, BC = 6cm. Kẻ AD vuông góc với BC (D thuộc BC)
a, Tìm các tam giác bằng nhau trong hình
b. Tính ddoojj dài AD
Bài 4. Cho tam giác MNP vuông tại N biết MN=20cm, MP =25cm.
a,Tìm độ dài cạnh NP?
b, Cho tam giascc DEF có DE= 10cm, DF= 24cm, EF= 26cm.Chứng minh tam giác DEF vuông?
Làm ơn giúp mình đi mình đang cần gấp lắm