cho tam giác ABC vuông tại A kẻ AH vuông góc với BC gọi D E là trung điểm của AB AC Tính góc DHE
cho tam giác ABC vuông tại A kẻ AH vuông góc với BC gọi D E là trung điểm của AB AC Tính góc DHE
cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Gọi D,E theo thứ tự là trung điểm của AB và AC. Tính góc DHE?
ta có DE là đường trung bình của BC nên DE//BC nen goc DHE = BAC =90 do
NGOC ANH B1 NGUYEN DU
TUẤN HƯƠNG
tam giác ahc có he là trung tuyến suy ra tam giác aeh cân tại e suy ra góc eah bằng góc eha
cm tương tự tam giác dha ta được góc dha bằng góc dah mà góc dah+góc hac bằng 90 độ
do đó góc dha+góc eha=90
hay góc DHE=90 độ
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. Gọi D,E theo thứ tự là trung điểm của AB, AC. Tính số đo góc DHE.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. Gọi D, E theo thứ tự là trung điểm của AB và AC. Tính góc DHE.
cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC. gọi D,E theo thứ tự là trung điểm của AB và AC. tính góc DHE? (nêu rõ cách giải ra nhè, lm sao cho mk dễ hiểu nha)
C1: Chứng minh DH=AD=1/2AB
HE=AE=1/2AC
tam giác ADE=DHE => DHE=90 độ
C2. Chứng minh Tam giác DHE đồng dạng BAC (c.c.c)
=> DHE=BAC=90 độ
cho tam giác cân ABC có ABC : AB=AC=10cm , BC=12cm , gọi AH là tia phân giác góc A (H thuộc BC)
a. CM BH=HC và AH vuông góc BC
b. Tính độ dài AH
c. Kẻ HD vuông góc AB (D thuộc AB) HE vuông góc AC (E thuộc AC).Hỏi tam giác DHE là tam giác gì ?
d. CM DE//BC
Giúp mình với ạ 😭✨
a: ΔABC cân tại A có AH là phân giác
nên H là trung điểm của BC
ΔABC cân tại A có AH là trung tuyến
nên AH vuông góc BC
b: BH=CH=12/2=6cm
AH=căn AB^2-AH^2=8cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>AD=AE và HD=HE
=>ΔHDE cân tại H
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
cho tam giác vuông ABC có A=90 . Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a.Cminh tứ giác AEHD là hình chữ nhật
b. Gọi N là trung điểm AE. Gọi O là giao điểm cảu AH và DE. CMINH 3 ĐIỂM O,M,N thẳng hàng
c. cminh tam giác MDE là tam giác vuông
d. Giả sử tứ giác OHMD là hình vuông có diện tích bằng a. Tính diện tích ABC theo a
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
cho tam giác vuông ABC có A=90 . Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a.Cminh tứ giác AEHD là hình chữ nhật
b. Gọi N là trung điểm AE. Gọi O là giao điểm cảu AH và DE. CMINH 3 ĐIỂM O,M,N thẳng hàng
c. cminh tam giác MDE là tam giác vuông
d. Giả sử tứ giác OHMD là hình vuông có diện tích bằng a. Tính diện tích ABC theo a
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, lấy điểm D sao cho AB vuông góc với HD tại trung điểm HD, lấy điểm E sao cho AC vuông góc với HE tại trung điểm HE. CM
a) A là trung điểm của DE
b) Tam giác DHE vuông
c) BD//CE
a, AB là trung trực của HD (gt) => AH = AD (đn)
AC là trung trực của EH (gt) => AE = AH (đn)
=> AD = AE mà A nằm giữa D và E
=> A là trung điểm của DE (đn)
b, HN _|_ AC (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AB và HN phân biệt
=> HN // AB (tc)
=> góc AMH + góc NHM = 180 (trong cùng phía)
mà góc AMH = 90 do HM _|_ AB (gt)
=> góc NHM = 180 - 90 = 90
=> tam giác DHE vuông tại H (đn)
c. xét tam giác AHB và tam giác ADB có : AH = AD (câu a)
AB chung
HB = BD do thuộc đường trung trực của HD (gt)
=> tam giác AHB = tam giác ADB (c-c-c)
=> góc AHB = góc ADB (đn)
mà AH _|_ BC (gt) => góc AHB = góc AHC = 90 (đn)
=> góc ADB = 90
xét tam giác CEA và tam giác CHA có : AC chung
AE = AH (Câu a)
EC = HC do C thuộc đường trung trực của EH (gt)
=> tam giác CEA = tam giác CHA (C-C-C)
=> góc CEA = góc CHA
mà góc CHA = 90 (Cmt)
=> góc CEA = 90
góc ADB = 90 (cmt)
=> góc CEA + góc ADB = 90 + 90 = 180
mà 2 góc này trong cùng phía
=> CD// CE(tc)