Tìm x thỏa mãn :
\(\left|x-10\right|^{10}+\left|x-11\right|^{11}=1\)
Tìm x thỏa mãn :\(\left|x-10\right|^5+\left|x-11\right|^6=1\)
Tìm x thỏa mãn : \(\left|x-10\right|^5+\left|x-11\right|^6=1\)
Tìm x thỏa mãn : \(\left|x-10\right|^5+\left|x-11\right|^6=1\)
\(\left|x-10\right|^5+\left|x-11\right|^6=1\)
Ta có: \(\left|x-10\right|^5+\left|x-11\right|^6>0\)nên\(\left|x-10\right|^5+\left|x-11\right|^6=1\)khi và chỉ khi
\(\orbr{\begin{cases}\left|x-10\right|^5=1;\left|x-11\right|^6=0\\\left|x-10\right|^5=0;\left|x-11\right|^6=1\end{cases}}\)
TH1: \(\orbr{\left|x-10\right|^5=1;\left|x-11\right|^6=0}\)
+) \(\orbr{\left|x-10\right|^5=1\Leftrightarrow}\left|x-10\right|=1\Leftrightarrow\orbr{\begin{cases}x-10=1\\x-10=-1\end{cases}}\)
\(\Rightarrow x\in\left\{11;-9\right\}\)
\(\left|x-11\right|^6=0\Leftrightarrow x=11\)
Vậy ở trường hợp này thì x = 11
TH2: \(\orbr{\left|x-10\right|^5=0;\left|x-11\right|^6=1}\)
+)\(\orbr{\left|x-10\right|^5=0\Leftrightarrow}\left|x-10\right|=0\Leftrightarrow x=10\)
+) \(\left|x-11\right|^6=1\Leftrightarrow\orbr{\left|x-11\right|=1\Leftrightarrow}\orbr{\begin{cases}x=12\\x=-10\end{cases}}\)
Ở trường hợp này không có x thỏa mãn
Vậy x = 11
ctk_07 Anh không biết em có thiếu kết quả không nhưng nhìn câu kết luận của em là sai rồi, bài này nhìn qua là đã có 2 nghiệm :
Bài làm :
Dễ thấy, \(x=10\) và \(x=11\) là hai nghiệm của đề bài.
Xét \(x< 10\Rightarrow\left|x-11\right|^6>1,\left|x-10\right|^5>0\)
\(\Rightarrow\) vô nghiệm
Xét \(x>11\Rightarrow\left|x-10\right|^5>1.\left|x-11\right|^6>0\)
\(\Rightarrow\)vô nghiệm
Xét \(10< x< 11\Rightarrow\hept{\begin{cases}0< x-10< 1\\-1< x-11< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left|x-10\right|^5< x-10\\\left|x-11\right|^6< 11-x\end{cases}} \)
Khi đó : \(\left|x-10\right|^5+\left|x-11\right|^6< 1\)
\(\Rightarrow\)vô nghiệm
Vậy : \(x=10,x=11\) thỏa mãn đề.
BÀI 1: tìm x biết : \(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
BÀI 2: tìm số tự nhiên x thỏa mãn: \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{16}{34}\)
BÀI 3: Cho x;y thỏa mãn : \(\left(x-2014\right)^{2010}+\left(y-2010\right)^{2014}\le0\)
bài 1
[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]
=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0
=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0
Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0
=>x+2=0
=>x=-2
Bài 1 : -2
Bài 2 : 15
Bải 3 : x =2014 ; y = 2010
tìm tất cả các x,y thỏa mãn biết: a)\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
b)\(\left|2x-27\right|^{2015}+\left(3y+10\right)^{2016}=0\)
c)sao cho (2007ab) à bình phương của một số tự nhiên
Tìm x thỏa mãn:
\(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10.\)
Cách 2: Do \(\left|x\right|\ge0\forall x\) nên \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|\ge0\)
\(\Rightarrow5x-10\ge0\Rightarrow x\ge2\)
Với \(x\ge2\), ta có : \(x+7>0;x+1>0;x-2\ge0\)
Suy ra \(x+1+x-2+x+7=5x-10\)
\(\Leftrightarrow-2x=-16\Leftrightarrow x=8\left(tm\right)\)
Vậy x = 8.
Cách 1: Với \(x\le-7\), ta có : \(x+7\le0;x+1< 0;x-2< 0\)
Suy ra \(-x-1-x+2-x-7=5x-10\)
\(\Leftrightarrow-8x=-4\Leftrightarrow x=\frac{1}{2}\left(l\right)\)
Với \(-7< x\le-1\), ta có : \(x+7>0;x+1\le0;x-2< 0\)
Suy ra \(-x-1-x+2+x+7=5x-10\)
\(\Leftrightarrow-6x=-18\Leftrightarrow x=3\left(l\right)\)
Với \(-1< x\le2\), ta có : \(x+7>0;x+1>0;x-2\le0\)
Suy ra \(x+1-x+2+x+7=5x-10\)
\(\Leftrightarrow-6x=-20\Leftrightarrow x=\frac{10}{3}\left(l\right)\)
Với \(x>2\), ta có : \(x+7>0;x+1>0;x-2>0\)
Suy ra \(x+1+x-2+x+7=5x-10\)
\(\Leftrightarrow-2x=-16\Leftrightarrow x=8\left(tm\right)\)
Vậy x = 8.
Chứng minh: \(\frac{2}{x^2-1}+\frac{4}{x^2-4}+...+\frac{20}{x^2-100}=\frac{11}{\left(x-10\right)\left(x+1\right)}+\frac{11}{\left(x-9\right)\left(x+2\right)}+...+\frac{11}{\left(x-1\right)\left(x+10\right)}\)
Vê trái:
\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)
\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)
Vế phải:
\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)
\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải
=> đpcm
Tìm hệ số của x8 trong khai triển: \(f\left(x\right)=\left(1+x\right)^{10}+\left(1+x\right)^{11}+\left(1+x\right)^{12}\)
Xét khai triển : (x + 1)n
Tk+1 = \(C_n^k\). xk . 110 - k = \(C_n^k\) . xk.
+) Cụ thể với khai triển (x + 1)10. Số hạng chứa x8 ứng với k = 8
Số hạng x8 trong khai triển này là \(C_{10}^8\) . x8 = 45x8
+) Cụ thể với khai triển (x + 1)11. Số hạng chứa x8 ứng với k = 8
Số hạng x8 trong khai triển này là \(C_{11}^8\) . x8 = 165x8
+) Cụ thể với khai triển (x + 1)12. Số hạng chứa x8 ứng với k = 8
Số hạng x8 trong khai triển này là \(C_{12}^8\) . x8 = 495x8
Vậy hệ số của x8 trong khai triển của đa thức trên là : 165 + 495 + 45 = 705tìm P(x) thỏa mãn (x-1)\(P_{\left(x+1\right)}\)=(x+2)\(P_{\left(x\right)}\) với mọi x và P(10) = 100