Chứng minh rằng tồn tại số tự nhiên k thỏa mãn :
\(189^k-1⋮10^5\)
chứng minh rằng nếu n thuộc N thỏa mãn ( n, 2013)=1 thì luôn tồn tại số tự nhiên k khác 0 sao cho nk - 1 chia hết cho 2013 ?
Bài 11. Chứng minh rằng tồn tại số nguyên dương k sao cho số 23k
có tận cùng là 0001.
Bài 12. Cho 15 số tự nhiên a1,a2,··· ,a15 thoả mãn 0 < a1 < a2 < ··· < a15 < 28. Chứng minh rằng tồn tại
3 chỉ số i < j < k mà ai = ak −aj
chứng minh rằng không tồn tại n là số tự nhiên thỏa mãn 2014^2014+1 chia hết cho n^2+2012n
Chứng minh rằng tồn tại số tự nhiên k sao cho ( 199k - 1 ) chia hết cho 104
Xét dãy số gồm 104 số : 1991; 1992; 1993; ...; 199104
Chia các số trong dãy cho 104 . Các số dư có thể là 1;2;3;...;103. (Số dư khác 0 vì các số trong dãy đều lẻ mà 104 là số chẵn )
=> Có ít nhất hai số trong dãy có cùng số dư
Giả sử hai số đó là: 199m; 199n (1 <m; n <104 và m > n)
=> 199m - 199n chia hết cho 104
=> 199n.(199m-n - 1) chia hết cho 104
Mà 199n không chia hết cho 104 Nên 199m-n - 1 chia hết cho 104
Đặt k = m - n => 199k - 1 chia hết cho 104
Vậy ....
bài làm
Xét dãy số gồm 104 số : 1991; 1992; 1993; ...; 199104
Chia các số trong dãy cho 104 . Các số dư có thể là 1;2;3;...;103. (Số dư khác 0 vì các số trong dãy đều lẻ mà 104 là số chẵn )
=> Có ít nhất hai số trong dãy có cùng số dư
Giả sử hai số đó là: 199m; 199n (1 <m; n <104 và m > n)
=> 199m - 199n chia hết cho 104
=> 199n.(199m-n - 1) chia hết cho 104
Mà 199n không chia hết cho 104 Nên 199m-n - 1 chia hết cho 104
Đặt k = m - n => 199k - 1 chia hết cho 104
Đáp số:...........
hok tốt
Chứng Minh rằng tồn tại số tự nhiên k sao cho ( 199k - 1 ) chia hết cho 104
Ta đặt dãy số: 1999^1, 199^2 ,..., 1999^104
Ta lấy tất cả các số trên chia cho 104 sẽ thấy có ít nhất 103 số dư
1,2,3....,103 ( sẽ dư 0 vì 1999 và 104 nguyên tố cùng nhau nên 1999mũ bao nhiêu cũng chia hết cho 104)
Mà dãy số trên có 104 => sẽ có ít nhất 2 số cùng dư
Gọi 2 số đó là 199^a và 199^b ( a > b)
Vì 1999^ a và 199^b chia hết cho 104 có cùng số dư nên 199^a - 199^b chia hết cho 104
=> 199^bx ( 199^ a-b -1)
mà ước chung lớn nhất ( 199^b,104)=1 nên 199^ a-b-1 chia hết cho 104
Vậy với k= a-b thfi tồn tại 199k -1 chai hết cho 104