so sánh \(2^{30}+3^{20}+4^{30}và3\cdot24^{10}\)
so sánh \(2^{30}+3^{20}+4^{30}và3\cdot24^{10}\)
So sánh
\(2^{30}+3^{30}+4^{30}và3^{20}+6^{20}+8^{20}\)
Ta có :
230 + 330 + 430= (23)10 + (33)10 + (43)10
= 810 + 2710 + 6410
320 + 620 + 820= ( 32)10 + (62)10 + (82)10
= 910 + 3610 + 6410
Ta thấy: 810 + 2710 + 6410 < 910 + 3610 + 6410
\(\Rightarrow\) 230 + 330 + 430 < 320 + 620 + 820
so sánh
\(2^{30}+3^{20}+4^{30}\)và \(3\cdot24^{10}\)
So sánh \(2^{10}\)+\(3^{20}\)+\(4^{30}\)và \(3\cdot24^{10}\)
1024+3486784401+1.152921505.\(10^{18}\)và 3.6.340338097.\(10^{13}\)
1.152921508.\(10^{18}\) , 1.902101429.\(10^{14}\)
v
Chúc bạn hoc giỏi
Ta có :
\(3.24^{10}=3.\left(2^3.3\right)^{10}=3^{11}.2^{30}=3^{11}.4^{15}< 4^{15}.4^{15}=4^{30}\)
\(\Rightarrow2^{10}+3^{20}+4^{30}>3.24^{10}\)
Vậy \(2^{10}+3^{20}+4^{30}>3.24^{10}\)
_Chúc bạn học tốt_
so sánh \(^{4^{30}}\) và \(3\cdot24^{10}\)
So sánh
a/4020và330 ; b/721và 820 ;c/ (1/3+1/32+1/33+..........+1/399)và 1/2
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
so sánh \(2^{30}+3^{30}+4^{30}\)và \(3\cdot24^{10}\)
Chứng minh: \(\left(24^{54}\cdot54^{24}\cdot2^{10}\right)\) chia hết cho \(\left(72^{63}\right)\)
so sánh
530và350
273và95
1440và1420
215và1216
Bài làm :
\(1\text{)}\hept{\begin{cases}5^{30}=\left(5^3\right)^{10}=125^{10}\\3^{50}=\left(3^5\right)^{10}=243^{10}\end{cases}}\Rightarrow5^{30}< 3^{50}\)
\(2\text{)}\hept{\begin{cases}27^3=\left(3^3\right)^3=3^9\\9^5=\left(3^2\right)^5=3^{10}\end{cases}}\Rightarrow27^3< 9^5\)
\(3\text{)}14^{40}>14^{20}\)
\(4\text{)}\hept{\begin{cases}2< 12\\15< 16\end{cases}}\Rightarrow2^{15}< 12^{16}\)
so sánh: $2^{30}+3^{20}+4^{10}$ và $3*24^{10}$
cái gì vậy
bạn mình đoạc ko hiểu
mình cũng chả biết