biết: \(\frac{a}{5}+\frac{1}{10}=\frac{-1}{b}\). Tìm a+b lớn nhất
Biết \(\frac{a}{5}+\frac{1}{10}=\frac{-1}{b}\), tổng a + b lớn nhất có thể là ?
Để có kết quả là -1/b thì a phải là -2/10 rút gọn còn -1/5. Vậya=-1
Ta có: mẫu số chung là 10. Vậy b=10
=>-1+10=9
cho a, b là các số tự nhiên khác 0 biết 1 > \(\frac{1}{a}\)+ \(\frac{1}{b}\)> \(\frac{7}{10}\). Tìm giá trị lớn nhất của biết thức A = \(\frac{2020}{a+b}\)
Tìm cách giải: A là phân số dương có tử số là 2020 không đổi. Vì vậy, muốn A đạt GTLN thì (a+b) phảo đạt GTNN. Để tìm (a+b)min ta phải tìm các giá trị có thể có của a và b rồi tìm các GTNN của a và b. Ta thấy ngay tù \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Chú ý tính chất nghịch đảo của 1 số tự nhiên m,n khác 0: m>n thì \(\frac{1}{m}< \frac{1}{n}\)
Giải
Do \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Không mất tính tổng quát giả sử: 1<a\(\le b\)
\(\Rightarrow1>\frac{1}{a}\ge\frac{1}{b}\). Ta có \(\frac{1}{a}+\frac{1}{b}\le\frac{1}{a}+\frac{1}{a}\)hay \(\frac{7}{10}\le\frac{2}{a}\Rightarrow2\le2\frac{6}{7}\)
Do a\(\inℕ;a>1\)nên a=2(1)
Với a=2 ta có \(\frac{7}{10}< \frac{1}{2}+\frac{1}{b}< 1\Leftrightarrow\frac{1}{5}< \frac{1}{6}< \frac{1}{2}\Rightarrow b\in\left\{3;4\right\}\left(2\right)\)
Từ (1) và (2) ta có min(a+b)=2+3=5
Vậy maxA=\(\frac{2020}{5}=404\)
Biết \(\frac{a}{5}\) +\(\frac{1}{10}\)= \(\frac{-1}{b}\), tổng a +b lớn nhất là ? Tìm a , b (Nếu có thể)
Bài 1: Để làm xong công việc trong 5 giờ cần 12 công nhân. Nếu số công nhân tăng thêm 12 người thì thời gian hoàn thành công việc là mấy giờ?
Bài 2:
a) Tìm các số hữu tỉ a, b, c biết: a.b = \(\frac{1}{3}\); b.c = \(\frac{5}{4}\); c.a = \(\frac{3}{5}\)
b) Tính nhanh: A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{12.13.14}+\frac{1}{13.14.15}\)
Bài 3:
a) Tìm GTNN của: A = |x-10| + |x-5|
b) Tính giá trị của: B = \(^{x^{100}+y^{101}}\)biết |x+1| + \(\left(y^2-1\right)^6\)
Bài 4:
a) Tìm hai số. Biết tỉ số của hai số đó là \(\frac{1}{2}\)và tổng của hai số đó bằng 12.
b) Cho \(\frac{a}{3}=\frac{3}{b}=\frac{b}{a}\). Chứng minh rằng: a = b (với a + b \(\ne\)-3)
Bài 5: Tìm x để biểu thức sau đạt giá trị lớn nhất. Hãy tìm giá trị lớn nhất đó. A=\(\frac{2026}{\left|x-2013\right|+2}\)
hỏi ít ít thôi
từ từ người ta trả lời
hỏi nhìu thế ai tl cho hết
1)Tìm A biết rằng:A=\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
2)Kí hiệu [x] là số nguyên lớn nhất không vượt quá x. Tìm [A] biết :A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}\)
với a+b+c khác 0
=> A=a/b+c =b/a+c = c/b+a = a+b+c/b+c+a+c+b+a = a+b+c/2.(a+b+c) =1/2
=> A=1/2
với a+b+c =0
=>a+b= -c
b+c= -a
a+c= -b
thay vào A ta được :
=>A= a/-a = b/-b = c/-c=-1
=>A= -1
vậy A= -1 hoặc 1/2
1)a,b,c có khác 0 không bạn
nếu khác 0 thì tớ mới làm được
2) ta có: A<1/2+1/6+1/12+...+1/4054182
suy ra A<1/1.2 + 1/2.3 + 1/3.4 + ...+1/2013.2014
A<1- 1/2 +1/2-1/3+1/3-1/4+...+1/2013-1/2014
A<1-1/2014=2013/2014<1
do A >0 suy ra [A] =0
bài 1:
1, A=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
2, A= \(\frac{2n-7}{n-5}\)
a)Tìm n\(\in\)Z, để A có giá trị nguyên
b)Tìm n\(\in\)Z, để A có giá trị lớn nhất
Bài 1
1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(A=\frac{15}{14}\)
2,
a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)
Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)
Suy ra \(n\in\left\{6;4;8;2\right\}\)
Vậy ......
b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)
Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)
Khi đó A = 5
Vậy A đạt GTLN khi và chỉ khi n = 6
Hãy tìm A biết A là số lớn nhất với điều kiện sau:
A\(\le\)B
B=\(\frac{1}{\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2015}}\)
Cho ba số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của:
\(A=\frac{1}{a^2+ab-a+5}+\frac{1}{b^2+bc-b+5}+\frac{1}{c^2+cb-c+5}\)
Ta có a2 + 1 \(\ge\)2a
Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)
Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)
Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)
=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)
\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)
=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)
cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?
Dự đoán điểm rơi a = b = c = 1
Ta có : \(\frac{1}{ab+a+1}+\frac{1}{3}\ge\frac{\left(1+1\right)^2}{ab+a+1+3}\)(BĐT Schwarz)
\(=\frac{4}{a+b+c+4}\) (đpcm)
Cho các số thực dương a,b,c thỏa mãn abc = 1 . Tìm giá trị lớn nhất của biểu thức .
\(T=\frac{1}{a+5}+\frac{1}{b+5}+\frac{1}{c+5}\)