cmr trong tam giác vuông tại a R\(\ge\) (\(\sqrt{2}\)+1)r
Cho tam giác ABC vuông tại A có BC=a CA=b AB=c gọi r là bán kính đường tròn nội tiếp tam giác CMR \(\frac{r}{a}\le\frac{\sqrt{2}-1}{2}\)
Xét tam giác ABC có I là tâm đường tròn nội tiếp
\(S_{ABC}=S_{AIB}+S_{BIC}+S_{CIA}=\frac{1}{2}.AB.r+\frac{1}{2}.BC.r=\frac{1}{2}\)
\(AB+BC+CA.r=pr\)
P/s: Ko chắc
Cho tam giác ABC vuông tại A có BC=a CA=b AB=c gọi r là bán kính đường tròn nội tiếp tam giác CMR \(\frac{r}{a}
Cho tam giác ABC vuông tại A. Gọi R, r, S lần lượt là bán kính đường trong ngoại tiếp, đường tròn nội tiếp và diện tích tam giác ABC. CMR: (R+r)2 lớn hơn hoặc bằng 2S
Cho tam giác ABC vuông tại A. r, R lần lượt là bán kính đường tròn nội, ngoại tiếp tam giác. Cmr: AB+AC=2(r+R)
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= ( BD + AD ) + ( AE + CE )
= AB + AC
Vậy AB = AC = 2 ( R + r )
cho tam giác ABC vuông tại A có BC=a CA=b AB=c gọi r là bán kính đường tròn nội tiếp tam giác CMR r/a<= (căn2-1)/2
Cho đtròn (O;R) nội tiếp tam giác ABC (vuông tại A) . CMR : R=p-a trong đó p là nửa chu vi tam giác ABC , a là độ dài cạnh huyền
Cho tam giác ABC vuông tại A ngoại tiếp ( I,r) và nội tiếp (O;R). CMR
a) 2r=AB+AC-BC
b) AB+AC=2(r+R)
1) CMR: Trong tam giác vuông đường kính đường tròn nội tiếp bằng tổng 2 cạnh góc vuông trừ cạnh huyền
2) Cho tam giác ABC vuông A đường cao AH. Gọi (O;R) bán kính (O1;R1) ; (O2;R2) thứ tự là đường tròn nội tiếp tam giác ABC; ABH; ACH.
a: CMR: R + R1 + R2 = AH
b: R^2 = R1^2 + R2^2
c: Tính O1O2. Biết AB = 3cm; AC = 4cm.
3) Cho đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC thứ tự B;E;F. Qua E kẻ đường song song BC cắt AD, BF lần lượt tại M, N.
CMR: M là trung điểm EN
Cho tam giác ABC vuông ở A R,r : Bán kính của đường kính ngoại tiếp ,nội tiếp tam giác ABC CMR: câu a r=1/2(AB+AC-BC) câu b AB+AC=2(R+r)