Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Tài
Xem chi tiết
Hoàng Phúc
14 tháng 11 2015 lúc 20:26

nhân từng vế 3 đẳng thức ta được:

ab.bc.ac=1/2.2/3.3/4 =1/4

=>(abc)^2=1/4=(+1/2)^2

=>abc=+1/2

+)abc=1/2

cùng với ab=1/2=>c=1/2:1/2=1

cùng với bc=2/3=>a=3/4

cùng với ac=3/4=>b=2/3

+)abc=-1/2

cùng với ab=1/2=>c=-1/2:1/2=-1

cùng với bc=2/3=>a=-3/4

cùng với ac=3/4=>b=-2/3

vậy (a;b;c)=(-3/4;-2/3;-1)  và (3/4;2/3;1)

tick nhé

Monkey D Luffy
14 tháng 11 2015 lúc 19:49

    

Nết Đặng
Xem chi tiết
Lê Thúy Hằng
Xem chi tiết
chuyên toán thcs ( Cool...
18 tháng 8 2019 lúc 16:22

em vào câu hỏi tương tự nha 

link đây

Câu hỏi của Fan RUNNING MAN - Toán lớp 7 - Học toán với OnlineMath

Study well 

Wisteria
18 tháng 8 2019 lúc 16:29

=> a.b.b.c.c.a=a^2.b^2.c^2=(a.b.c)^2=1/2.2/3.3/4=1/4

=>a.b.c=1/2

=>a=1/2:2/3=3/4

=>b=1/2:3/4=2/3

=>c=2/3:2/3=1

Vậy a=3/4,b=2/3,c=1

.
18 tháng 8 2019 lúc 16:30

theo đề ta có:

\(ab=\frac{1}{2};bc=\frac{2}{3};ca=\frac{3}{4}\)

=>\(ab.bc.ca=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\)

=>\(\left(a.b.c\right)^2=\frac{1}{4}=\left(\frac{1}{2}\right)^2\)

=>\(a.b.c=\frac{1}{2}\)hoặc \(a.b.c=-\frac{1}{2}\)

Với \(a.b.c=\frac{1}{2}\)thì:

\(ab=\frac{1}{2}\)=>\(\frac{1}{2}.c=\frac{1}{2}\)=>\(c=\frac{1}{2}:\frac{1}{2}=1\)

\(bc=\frac{2}{3}\)=>\(\frac{2}{3}.a=\frac{1}{2}\)=>\(a=\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)

\(ca=\frac{3}{4}\)=>\(\frac{3}{4}b=\frac{1}{2}\)=>\(b=\frac{1}{2}:\frac{3}{4}=\frac{2}{3}\)

Với \(a.b.c=-\frac{1}{2}\)thì :

\(ab=\frac{1}{2}\)=>\(\frac{1}{2}.c=\frac{-1}{2}\)=>\(c=\frac{-1}{2}:\frac{1}{2}=-1\)

\(bc=\frac{2}{3}\)=>\(\frac{2}{3}.a=\frac{-1}{2}\)=>\(a=\frac{-1}{2}:\frac{2}{3}=\frac{-3}{4}\)

\(ca=\frac{3}{4}\)=>\(\frac{3}{4}.b=\frac{-1}{2}\)=>\(b=\frac{-1}{2}:\frac{3}{4}=\frac{-2}{3}\)

vậy \(\hept{\begin{cases}a=\frac{-3}{4}\\b=\frac{-2}{3}\\c=-1\end{cases}}\)hoặc \(\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{2}{3}\\c=1\end{cases}}\)

chúc bn học tốt!

#𝒌𝒂𝒎𝒊ㅤ♪
Xem chi tiết
Đặng Viết Thái
31 tháng 3 2019 lúc 20:26

b, x=y=-1

Thám Tử THCS Nguyễn Hiếu
9 tháng 3 2020 lúc 14:41

a) Áp dụng tính chất dãy tỉ số bằng nhau ta dc: 

\(\frac{ab+1}{9}=\frac{ac+2}{15}=\frac{bc+3}{27}=\frac{ab+ac+bc+6}{51}=\frac{17}{51}=\frac{1}{3}\)

=> \(\frac{ab+1}{9}=\frac{1}{3}\)=> ab = 2 (1)

Tương tự nha vậy ta dc: ac = 3 (2) và bc = 6 (3)

Khi đó: (abc)2 = 36 => \(\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)

* Với abc = 6

Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}}\)

* Với abc = - 6

Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=-3\\b=-2\\a=-1\end{cases}}\)

Vậy ...

b) x + 2xy + y = 0

<=> 2x + 4xy + 2y = 0

<=> 2x(1 + 2y) + (1 + 2y) = 1

<=> (2x + 1)(2y + 1) = 1

Tới đây bạn giải theo pt ước số nha

Khách vãng lai đã xóa
Lê Tài Bảo Châu
Xem chi tiết
Phạm Thành Đông
27 tháng 5 2021 lúc 18:08

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

Khách vãng lai đã xóa
abc081102
Xem chi tiết
Vi Na
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 7 2016 lúc 12:15

Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

Vậy M = 6

Trang Candy
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Nguyễn Hương Giang
16 tháng 12 2016 lúc 21:04

Ta có :

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)

\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0

=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25