Tìm x,y,z biết:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(2x^2+2y^2-3z^2=-100\)
Tìm tổng của 3 số dương x,y,z biết:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5};2x^2+2y^2-3z^2=-100\)
Lời giải:
Đặt $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k(k>0)$
$\Rightarrow x=3k; y=4k; z=5k$.
Khi đó:
$2x^2+2y^2-3z^2=-100$
$\Rightarrow 2(3k)^2+2(4k)^2-3(5k)^2=-100$
$\Rightarrow -25k^2=-100$
$\Rightarrow k^2=4\Rightarrow k=2$ (do $k>0$)
Ta có:
$x=3k=3.2=6; y=4k=4.2=8; z=5k=5.2=10$
Tìm x, y,z biết:
a) \(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\)và x+y-z = 50
b) 3x = 2y; 7y = 5z và x+y+z = 92
c) x:y:z = 3:4:5 và \(2x^2+2y^2-3z^2=-100\)
d) \(\frac{x+y}{7}=\frac{x-y}{3}\)và x.y = 250
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
tìm x,y,z biết :\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x^2+2y^2-3z^2=-100\)
nhấn lộn lớp 1 là lớp 7 mà quan trọng j cái lớp quan trọng có giải dc ko mới là chuyện để come
Tổng của 3 số dương x,y,z, biết \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
và 2x2 + 2y2 - 3z2 =-100. Tìm x, y, z
tìm x,y,z biết \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x^2+2y^2-3z^2=-100\)
Tìm ba số x,y,z thõa mãn:\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
Tìm x,y,z thõa mãn: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và \(2x^2+2y^2-3z^2=-100\)
Ta có:x/3=y/4=z/5
=>đặt x=3k;y=4k;z=5k
2x^2+2y^2-3z^2=-100
<=>-25k^2=-100
<=>k^2=4
<=>\(\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
<=>\(\orbr{\begin{cases}\hept{\begin{cases}x=6\\y=8\\z=10\end{cases}}\\\hept{\begin{cases}x=-6\\y=-8\\z=-10\end{cases}}\end{cases}}\)
tìm x,y,z
x:y:z=3:4:5 và 2x2+2y2-3z2 =-100
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\) và x+y-z=50
\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-z+1}{3+4-5}=\frac{54}{2}=27\Rightarrow laanfluot:\)
Chia làm 2 phần hả bạn.
Phần 1:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Leftrightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Suy ra \(x^2=36;y^2=64;z^2=100\Rightarrow x=\pm6;y=\pm8;z=\pm10\)
Vậy (x,y,z) = (6,8,10) : (-6,-8,-10)
Phần 2 :
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+y+2-\left(z-1\right)}{3+4-5}=\frac{54}{2}=27\)
Suy ra \(\hept{\begin{cases}x=80\\y=106\\z=136\end{cases}}\)
Tìm x,y,z biết
a, \(\frac{x}{2}=\frac{y}{3}=\frac{7}{5}\)và x + y + z = 20
b, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và z - x = 16
c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x + 2y - 3z = -12
d, 2x = 3y; 5y = 7z và 3x - 7y + 5z = -30
e, x : y : z = 3 : 5 : (-z) và 5x - y + 3z = 124
f, 2x = 3y = 8z và x - y + z = 21
g, x : y : z = 3 : 4 : 5 và \(2x^2+2y^2-3z^2\) = -100
h, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và \(x^2+y^2+z^2\)= 14
cậu viết chắc lâu lắm nhỉ
a)x=4, y=6 ,z=10 c)x=6,y=9,z=12 e)x=-3,y=-5,z=154/3
b)x=12,y=16,z=28 d) y=-28, x=-42,z=-20 f)x=36,y=24,z=9
g)nản h)x=1,y=2,z=3
làm mất bao nhiêu lâu. k đúng giùm
a) ko có " z" sao làm!!
b) áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\) =\(\frac{z-x}{7-4}=\frac{16}{3}\)
=> x/3 = 16/3 => x = 16
=> y/4 = 16/3 => y = ...
=> z/7 = 16/3 => z = ...
Có ai trình bày chi tiết đc ko zậy? Mình chẳng hiểu gì hết trơn á!!!🤔