Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dư Hải
Xem chi tiết
Cô Hoàng Huyền
10 tháng 7 2017 lúc 8:45

Ta thấy \(\overline{abc}+\overline{bca}+\overline{cab}=111\left(a+b+c\right)=3.37\left(a+b+c\right)\)

Do 3 và 37 là các số nguyên tố, để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương thì \(a+b+c=3.37.k^2\left(k\in N,k\ne0\right)\)

Tuy nhiên do a, b, c là các chữ số nên \(a+b+c\le27\)

Vậy không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài.

Nhoc Nhi Nho
Xem chi tiết
SKT_ Lạnh _ Lùng
20 tháng 3 2016 lúc 8:54

ta có 

s = abc + bca + cab

=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> S = 111a + 111b + 111c

=> S = 111( a+b+c )= 37 . 3( a+b + c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

                       3(a+b+c) chia hết 37

                      => a+b+c chia hết cho 37

không chính phương

Thám tử lừng danh
Xem chi tiết
Trà My
16 tháng 3 2017 lúc 9:55

\(\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b\)

\(=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Do (3;37)=1 nên để \(\overline{abc}+\overline{bca}+\overline{cab}\) là số chính phương ta cần a+b+c=111 hoặc a+b+c=1112n+1 (*)

Mà \(a;b;c\le9\)và \(a\ne0\) =>  \(a+b+c\le27\)   nên không thể thỏa mãn (*) được

=> Ta không thể tìm được các số tự nhiên a;b;c => đpcm

Trần Linh Chi
Xem chi tiết
Trần Tuyết Như
22 tháng 4 2015 lúc 12:36

A= 111a+111b+111c=111(a+b+c) 
Chỉ với a+b+c=5 thì A=555 thì A không là số chính phương rồi.

Nguyễn Hoàng Thiên Băng
Xem chi tiết
Lê Nguyên Hạo
28 tháng 7 2016 lúc 19:41

A = abc + bca + cab

=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>A = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> A = 111a + 111b + 111c

=> A= 111( a+b+c )= 37 . 3( a+b + c)

giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

 3(a+b+c) chia hết 37

  => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le\) a + b + c \(\le\) 27

 A = abc + bca + cab không phải là số chính phương

Kim Seok Jin
Xem chi tiết
Nguyễn Anh Quân
1 tháng 1 2018 lúc 9:58

Có : abc+bca+cab = 100a+10b+c+100b+10c+a+100c+10a+b = 111.(a+b+c)

Để 111.(a+b+c) là 1 số chính phương thì a+b+c phải chia hết cho 111

Mà 1 < = a+b+c < = 27 => ko tồn tại a,b,c để 111.(a+b+c) chính phương

k mk nha

Duc Hay
1 tháng 1 2018 lúc 9:53

Không tồn tại

Nhật Huy Phạm
Xem chi tiết
Lê Song Phương
6 tháng 5 2023 lúc 20:15

\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).

\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)

\(S=222\left(a+b+c\right)\)

 Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí. 

 Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.

Nhật Huy Phạm
6 tháng 5 2023 lúc 21:14

mà Lê Song Phương ơi

mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:

2x(aaa+bbb+ccc)

2x111x(a+b+c)

222x(a+b+c)

đk bạn

 

My Love bost toán
Xem chi tiết
Kiên-Messi-8A-Boy2k6
19 tháng 2 2018 lúc 9:34

Ta có:abc+bca+cab=p

\(\Rightarrow p=100a+10b+c+100b+10c+a+100c+10a+b\)

\(\Rightarrow p=111a+111b+111c\)

\(\Rightarrow111.\left(a+b+c\right)=p\)

\(\Rightarrow p=3.\left(a+b+c\right).37\)

Vì \(p⋮37\)\(\Rightarrow\)Để p là SCP

\(\Rightarrow p⋮37^2\)

\(\Rightarrow3.\left(a+b+c\right)=37\)

\(\Rightarrow\left(a+b+c\right)=\frac{37}{3}\)

\(\Rightarrow\)Không tồn tai số tự nhiên có 3 chữ số \(\)abc

Thanh Ngô Thi
Xem chi tiết
Phạm Tuấn Kiệt
11 tháng 12 2015 lúc 11:22

1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên 
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84. 
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương. 
Vậy n = 40 

Thanh Hiền
11 tháng 12 2015 lúc 11:18

1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương

2)   Xin lỗi mình chỉ biết làm câu 1 thôi

 

Xem chi tiết
Black_sky
22 tháng 3 2020 lúc 21:49

Vào câu hỏi tương tự có nhiều lắm nha bạn

Khách vãng lai đã xóa
Nguyễn Linh Chi
22 tháng 3 2020 lúc 23:02

Câu hỏi của LÊ TRUNG HIẾU - Toán lớp 6 - Học toán với OnlineMath

Khách vãng lai đã xóa