Tìm đa thức bị chia f(x) biết đa thức chia là \(x^2-x+1\)thương là x+1 và dư là 2x-1
Tìm đa thức bị chia f(x) biết đa thức chia là x^2-x+1 thương là x+1 và dư là 2x-1.
Tìm đa thức bị chia biết đa thức chia là ( x 2 + x + 1),thương là (x + 3), dư là x – 2.
A. x 3 + 4 x 2 + 5x + 1
B. x 3 – 4 x 2 + 5x + 1
C. x 3 – 4 x 2 – 5x + 1
D. x 3 + 4 x 2 – 5x + 1
Đa thức bị chia cần tìm là:
( x 2 + x + 1)(x + 3) + x – 2
= x 2 . x + 3 x 2 + x.x+ 3x + x + 3 + x – 2
= x 3 + 4 x 2 + 5x + 1
Đáp án cần chọn là: A
Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
tìm đa thức f(x) . Biết f(x) chia cho (2x^2+3x+1) được thương là x+7 và còn dư; khi chia f(x) cho x-5 dư 745 và f(x) cho x-1 dư 41
a) Tìm x, y thỏa mãn .
b) Tìm x, y là các số tự nhiên lớn hơn 1 sao cho và .
c) Xác định đa thức f(x) biết f(x) chia hết cho 2x – 1, chia cho x – 2 thì dư 6, chia cho được thương là x + 2 và còn dư .
Câu 2 (4 điểm)1.Cho biểu thức
Xác định đa thức f(x) biết f(x) chia cho (x+1) dư 1, chia cho (x-1) dư 3 và chia cho x2-1 được thương là 2x và còn dư.
1) Đa thức P(x) khi chia cho x-2 thì dư 5, khi chia cho x-3 thì dư 7. Phần dư của đa thức P(x) khi chia cho (x-2)(x-3) là?
2) tÌM ĐA THỨC P(X) biết p(x) chia x-1 dư -2, P(x) chia cho x+1 dư 3, P(x) chia x2 -1 được thương là 2x và còn dư
Tìm đa thức f(x) sao cho f(x) chia cho x - 2 dư 1 , f(x) chia cho x + 5 dư 8 , f(x) chia cho x^2 + 3x - 10 được thương là 2x và còn dư .
GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2) và (x+5) lần lượt là p(x) và Q(x)
theo bài ra ta có
\(\hept{\begin{cases}f._x=\left(x-2\right).p._{\left(x\right)}+1............\left(1\right)\\f._{\left(x\right)}=\left(x+5\right).Q._{\left(x\right)}+8.......\left(2\right)\end{cases}}\)
GỌI THƯƠNG CỦA PHÉP CHIA f(x) cho (x-2)(x+5) [ là x^2+3x-10 phân tích thành] =2x là g(x) và số dư là nhị thức bậc nhất là ax+b
ta có, \(f._{\left(x\right)}=\left(x-2\right)\left(x+5\right).g._{\left(x\right)}+ax+b....................\left(3\right)\)
TỪ (1) VÀ (3) TA CÓ X=2 THÌ \(\hept{\begin{cases}f._2=1\\f_2=2a+b\end{cases}}\)
=> 2a+b=1 =>b=1-2a (4)
TỪ (2) VÀ (3) TA CÓ X=-5 THÌ \(\hept{\begin{cases}f_{\left(-5\right)}=8\\f_{\left(-5\right)}=-5a+b\end{cases}}\)
=> 8=-5a+b =>b=8+5a (5)
TỪ (4) VÀ (5) =>1-2a=8+5a <=> a=-1
=> b=3
vậy số dư là -x+3
vậy đa thức f(x) =(x-2)(x+5) .2x+(-x+3)=\(2x^3+6x^2-21x+3\)