Tam giác ABC cân tại A cmr : sin A/2 = BC / 2AB
ban vẽ hình nhé.
Kẻi AH là đường cao thì AH cũng là đường trung tuyến
Xét tam giác AHB vuông tại H
có cosB = AH/AB = 2AH/2AB = BC/2AB
Cho tam giác ABC cân tại A. CMR: cosB=\(\dfrac{BC}{2AB}\); và \(\sin\dfrac{A}{2}=\dfrac{BC}{2AB}\)
tam giác ABC cân tại A
Gọi AH là đường cao
=> AH cũng là trung tuyến
=>HB=HC=BC/2=>BC=2HB
ta có cos B = \(\dfrac{BH}{AB}=\dfrac{2BH}{2AB}=\dfrac{BC}{2AB}\) (ĐPCM)
AH là đường cao
=> AH cũng là phân giác
=> góc BAH=CAH=A/2
=> sin \(\dfrac{A}{2}\) =sin BAH =\(\dfrac{BH}{AB}=\dfrac{2BH}{2AB}=\dfrac{BC}{2AB}\)
Bài 1: Cho tam giác ABC cân tại A. Lấy D, E thuộc BC sao cho BD = CF. CMR: tam giác ABC cân tại A.
Bài 2: Tam giác ABC cân tại A. Lấy M thuộc AB, N thuộc AC sao cho AM = AN.
a) CMR: MN//BC.
b) Cho CM cắt BN tại I. CMR: IB = IC.
Bài 3: Tam giác ABC cân tại A. Lấy M thuộc BC. Vẽ MK//AB (K thuộc AC). CMR: MK = KC.
Bài 1: tính giá trị của đơn thức
B =\(\frac{1}{4}\left(a^2b^2\right)2ab\) tại a=1, b= |2|
Bài 2 cho tam giác abc vuông cân tại a vẽ AH vuông góc với BC tại H. CMR AB^2+CH^2=AC^2+BH^2
Bài 3: Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt Ac tại M. trên tia BC lấy D sao cho BD = BA
a) CM tam giác ABM= tam giác DBM
b) CM MD vuông góc với BC
C) Tia BA cắt tia DM tại E. CM AB song song với CE
\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|
\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)
\(B=\frac{1}{4}.4.2.1.2\)
\(B=4\)
Cho tam giác ABC thỏa mãn BC=2AB và \(\widehat{B}=2\widehat{C}\)
CMR tam giác ABC vuông tại A
1 Cho tam giác ABC cân tại A đường cao AH. M là một điểm bất kì trên cạnh BC. Kẻ đường thẳng qua M và song song với AH cắt AB và AC lần lượt tại N và Q
a, CM tam giác ANQ cân
b, Tính các góc của tam giác ANQ biết góc ABC=70
c,Kẻ AI vuông góc với MQ. CM AI song song với BC và AI=MH
2 Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M trên tia đối của tia CA lấy N sao cho AM+AN=2AB. CMR:
a, BM=CN
b,BC cắt MN tại trung điểm I của MN
Cho tam giác ABC cân tại A, H là trung điểm BC, kẻ HE vuông góc AC tại E; HF vuông góc AB tại F
1. CMR tam giác ABH = tam giác ACH
2. CMR tam giác AEF cân
3. CMR EF song song BC
a, xét tam giác ABH và tam giác ACH có AH chung
góc AHC = góc AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
b, ta giác ABH = tam giác ACH (câu a)
=> HB = HC (đn)
xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác BHF = tam giác CHE (ch-gn)
=> BF = CE (đn)
AB = AC (câu a)
BF + FA = AB
CE + AE = AC
=> FA = AE
=> tam giác AFE cân tại A (đn)
c, tam giác AFE cân tại A (Câu b)
=> góc AFE = (180 - góc BAC) : 2 (tc)
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)
=> góc AFE = góc ABC mà 2 góc này đồng vị
=> FE // BC (định lí)
Cho tam giác ABC cân tại A có AB = AC = 13cm; BC = 10cm. Tính sin A
A. sin A = 120 169
B. sin A = 60 169
C. sin A = 5 6
D. sin A = 10 13
Vì tam giác ABC cân tại A nên AE là đường cao đồng thời là đường trung tuyến
=> E là trung điểm BC => EB = EC = 5
Xét ABE vuông tại E có:
Mặt khác:
Xét ABH vuông tại H có:
Đáp án cần chọn là: A
-Cho tam giác ABC vuông tại A , có BC=2AB . Gọi H là trung điểm của BC , đường thẳng vuông góc với BC tại H cắt AC tại M.
a) Biết ABC = 60 độ , tính góc C ?
b) Chứng minh tam giác MAB = tam giác MHB.
c) Chứng minh tam giác MBC cân
d) Chứng minh BM là đường trung trực của AH
giúp với ạ cần hình gấp😭