tổng các số nguyên dương x sao cho x+56,x+113 đều là số chính phương
HELP!!!
Tìm tất cả các số nguyên dương x,y sao cho các số x² +3y và y² +3x đêug là số chính phương
Xác định số nguyên dương k nhỏ nhất sao cho tổng của 19 số nguyên dương liên tiếp k, k + 1, ... , k+18 là một số chính phương.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Cho 13 số nguyên thỏa mãn điều kiện: tổng của 6 số nguyên bất kì trong chúng nhỏ hơn tổng của bảy số còn lại. Chứng minh rằng tất các nguyên đã cho đều là dương.
Tìm tất cả các số nguyên dương n sao cho hai số n +26 và n - 11 đều là lập phương của hai số nguyên dương nào đó
\(n+26=a^3\left(a\in N\cdot\right)\)
\(n-11=b^3\left(b\in N\cdot\right)\)
=>\(a^3-b^3=37\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
\(\Rightarrow\left(a-b\right)\&\left(a^2+ab+b^2\right)\) là ước của 37
Mà \(a^2-ab+b^2\ge a-b\ge0\)
\(\int^{a^2+ab+b^2=37}_{a-b=1}\Leftrightarrow\int^{a=b+1}_{\left(b+1\right)^2+b\left(b+1\right)+b^2=37}\Leftrightarrow\int^{a=b+1}_{3b^2+3b-36=0}\Leftrightarrow\int^{a=4}_{b=3}\)(vì a;b>0) thay hoặc a vào chỗ đặt rồi tự tìm nốt
\(\text{Bài 1: Xác định số nguyên dương k nhỏ nhất sao cho tổng của 19 số nguyên dương liên tiếp k, k + 1, ... , k+18 là một số chính phương.}\)
Đặt tổng của 19 số nguyên dương liên tiếp là \(a^2\)
\(\Rightarrow19k+171=a^2\)
\(\Rightarrow19\left(k+9\right)=a^2\)
Vì k là số nguyên dương và k nhỏ nhất nên k+9 là số nguyên dương và k+9 nhỏ nhất
\(\Rightarrow k+9=19\Rightarrow k=10\)
Vậy k=10
Cho n là tích của tất cả các số nguyên tố không vượt quá 1 số cho trước nào đó. Chứng minh rằng (n - 1) và (n + 1) đều ko thể là số chính phương.
Ta có: n = 2.3.5.7.11.13. ...
Dễ thấy n chia hết cho 2 và không chia hết cho 4.
-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.
Vì n chẵn nên n+1 lẻ mà n+1= a2 nên a lẻ, giả sử a=2k+1, khi đó:
n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.
Vậy n+1 không chính phương.
-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.
Vậy n-1 không chính phương
(Hình như bài này của lớp 8 nha)
Câu 1 : Tập hợp các số nguyên x thỏa mãn /-17-x/=7 là
Câu 2 : Tập hợp các chữ số tận cùng có thể có 1 số nguyên tố lớn hơn 5 là
Câu 3 : Tập hợp các chữ số tận cùng là số chính phương là
cau 1: { -24 ; -10}
cau 2: { 1 ; 3 ; 7 ; 9 }
cau 3: { 1 ; 4 ; 5 ; 6 ; 9 }
tich cho minh nha
câu 1 là {-24;-10} câu 2 là {1;3;7;9} câu 3 là {0;1;4;5;6;9} , tick nha
Chứng minh rằng:
a, Nếu n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương.
b, Nếu 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương.
c, Nếu n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương.
d, Nếu mỗi số m và n là tổng của hai số chính phương thì tích của mn cũng là tổng của hai số chính phương.
Điền Đ (đúng) hoặc S (sai) trong các phát biểu sau:
Các phát biểu | Đ/S |
a) Nếu tổng hai số tự nhiên bằng 0 thì cả hai số tự nhiên đó đều bằng 0. | |
b) Nếu tổng hai số nguyên bằng 0 thì cả hai số nguyên đó đều bằng 0. | |
c) Tổng của nhiều số nguyên âm cũng là một số nguyên âm có giá trị tuyệt đối bằng tổng các giá trị tuyệt đối của các số đó. | |
d) Giá trị tuyệt đối của tổng nhiều số nguyên bằng tổng các giá trị tuyệt đối của các số đó. |
a) Đ
b) S
Vì tổng của hai số nguyên bằng 0 thì cả hai số nguyên đó đều bằng 0 hoặc hai số đó là hai số đối nhau. Ví dụ: (-3) + 3 = 0+ 0 = 0
c) Đ
d) S
Vì khẳng định sẽ bị sai khi các số nguyên đó không cùng dấu.