Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Con Gái Họ Trần
Xem chi tiết
thanh tam tran
29 tháng 8 2016 lúc 20:09

bacd=dacb vay ...

Sống cho đời lạc quan
10 tháng 12 2016 lúc 20:18

tự làm đi cái này không khó 

Nga Ngô
Xem chi tiết
Đinh quang hiệp
25 tháng 6 2018 lúc 19:38

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)=\frac{a+b}{a-b}\cdot\frac{a-b}{a+b}+\frac{a+b}{a-b}\left(\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)

\(=1+\frac{a+b}{a-b}\cdot\frac{\left(b-c\right)\left(c+a\right)+\left(c-a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)}=1+\frac{a+b}{a-b}\cdot\frac{bc+ab-c^2-ac+bc+c^2-ab-ac}{-a\cdot-b}\)

\(=1+\frac{\left(a+b\right)\left(2bc-2ac\right)}{\left(a-b\right)ab}=1+-\frac{2c\left(a+b\right)\left(a-b\right)}{\left(a-b\right)ab}=1+\frac{-2c\cdot-c}{ab}=1+\frac{2c^2}{ab}\left(đpcm\right)\)

Nguyễn Tất Đạt
25 tháng 6 2018 lúc 19:42

Ta có: \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)thay vào biểu thức đã cho:

\(\frac{a+b}{a-b}\left(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right)\)\(=\frac{-c}{a-b}\left(\frac{a-b}{-c}+\frac{b-c}{-a}+\frac{c-a}{-b}\right)\)

\(=1+\frac{-c\left(b-c\right)}{-a\left(a-b\right)}+\frac{-c\left(c-a\right)}{-b\left(a-b\right)}=1+\frac{c\left(b-c\right)}{a\left(a-b\right)}+\frac{c\left(c-a\right)}{b\left(a-b\right)}\)

\(=1+\frac{bc\left(b-c\right)}{ab\left(a-b\right)}+\frac{ac\left(c-a\right)}{ab\left(a-b\right)}=1+\frac{b^2c-bc^2+ac^2-a^2c}{ab\left(a-b\right)}\)

\(=1+\frac{c\left(b^2-a^2\right)-\left(bc^2-ac^2\right)}{ab\left(a-b\right)}=1+\frac{c\left(b-a\right)\left(a+b\right)-c^2\left(b-a\right)}{ab\left(a-b\right)}\)

\(=1+\frac{\left(b-a\right).\left[c\left(a+b\right)-c^2\right]}{ab\left(a-b\right)}=1+\frac{\left(a-b\right).\left[c^2-c\left(a+b\right)\right]}{ab\left(a-b\right)}\)

\(=1+\frac{c^2-\left(-c\right).c}{ab}=1+\frac{c^2-\left(-c^2\right)}{ab}=1+\frac{2c^2}{ab}\)(đpcm).

Lê Mạnh Hùng
Xem chi tiết
Nguyễn Minh Phương
30 tháng 11 2016 lúc 19:35

Bài này mà không làm đc đốt sách đê 

Hoàng Tử Lớp Học
30 tháng 11 2016 lúc 21:27

ê cu vô cái link này nè http://olm.vn/hoi-dap/question/94896.html tui vừa chép xong 

ooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

Nguyễn Thị Việt Trà
Xem chi tiết
Thanh Tùng DZ
21 tháng 5 2018 lúc 15:47

Từ \(\frac{a-b+c}{-a-b+c}=\frac{a+b+c}{-a+b+c}\)

\(\Rightarrow\frac{a-b+c}{-a-b+c}-1=\frac{a+b+c}{-a+b+c}-1\)

\(\Rightarrow\frac{2a}{-a-b+c}=\frac{2a}{-a+b+c}\)

Nếu a khác 0 , ta có : -a - b + c = -a + b + c \(\Rightarrow\)b = -b ( trái với gt )

Vậy a = 0

Lê Đan Huyền
Xem chi tiết
nguyễn minh quý
27 tháng 7 2017 lúc 9:59

đề sai r bn, cái sau p là a/a+c = b/b+d

Lê Thanh Trúc
Xem chi tiết
Phạm Gia Khánh
22 tháng 11 2018 lúc 21:11

bn có lời giải chưa

Đào Thu Hoà
Xem chi tiết
Đinh Đức Hùng
28 tháng 4 2017 lúc 20:31

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Leftrightarrow\frac{1}{c}=\frac{1}{2a}+\frac{1}{2b}\)

\(\Leftrightarrow\frac{1}{c}=\frac{a+b}{2ab}\)

\(\Leftrightarrow2ab=c\left(a+b\right)\)

\(\Leftrightarrow ab+ab=ac+cb\)

\(\Leftrightarrow ab-cb=ac-ab\)

\(\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)

Mạnh Nguyễn Đức
Xem chi tiết
Hồ Trâm Anh
4 tháng 7 2016 lúc 10:24

Khó nhỉ

Mạnh Nguyễn Đức
5 tháng 7 2016 lúc 8:52

khó thì mình mới nhờ các bạn chứ

Lương Phan
Xem chi tiết
alibaba nguyễn
1 tháng 7 2017 lúc 17:26

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM