Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kingstar
Xem chi tiết
ho huu duong
Xem chi tiết
Hồ Thu Giang
29 tháng 7 2015 lúc 10:04

Gọi ƯCLN(4n+3; 2n+3) là d. Ta có:

4n+3 chia hết cho d

2n+3 chia hết cho d => 4n+6 chia hết cho d

=> 4n+6-(4n+3) chia hết cho d

=> 3 chia hết cho d

Giả sử ƯCLN(4n+3; 2n+3) \(\ne\)1

=> 2n+3 chia hết cho 3

=> 2n+3+3 chia hết cho 3

=> 2n+6 chia hết cho 3

=> 2(n+3) chia hết cho 3

=> n+3 chia hết cho 3

=> n = 3k - 3

Vậy để ƯCLN(2n+3; 4n+3) = 1 thì n \(\ne\) 3k-3

thuphuong
Xem chi tiết
Phương Anh
Xem chi tiết
Phương Anh
4 tháng 12 2017 lúc 19:56
Help me <3 :(
Thảo My
Xem chi tiết
Nguyên Nguyễn
Xem chi tiết
Tran Tuan phuong
Xem chi tiết
Nguyễn Đức Vinh
Xem chi tiết
Châu Trần Như Ý
14 tháng 12 2020 lúc 22:00

Mình chỉ tạm thời trả lời câu c thôi:

+ Nếu n là số chẵn thì n là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                    (1)

+ Nếu n là số lẻ thì n+5 là số chẵn sẽ chia hết cho 2

suy ra: n.(n+5) sẽ chia hết cho 2                   (2)

 Vậy: từ 1 và 2 ta chứng minh rằng tích n.(n+5) luôn luôn chia hết cho 2 với mọi số tự nhiên n

Khách vãng lai đã xóa
Đức Mạnh Lê
Xem chi tiết
Phước Lộc
1 tháng 12 2017 lúc 11:00

Gọi ƯCLN(4n+3; 2n+1) là d. Ta có:

4n+3 chia hết cho d

2n+1 chia hết cho d => 4n+2 chia hết cho d

=> 4n+3-(4n+2) chia hết cho d

=> 1 chia hết cho d

vậy d = 1

Vậy ƯCLN(4n+3;2n+1) = 1