Giải phương trình nghiệm nguyên \(2x^2+y^2+2x+4y+2xy+5=0\)
Giải phương trình nghiệm nguyên: 3x5+2x+2xy-y^2=0
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
giải phương trình nghiệm nguyên sau
\(2x^2+y^2-2xy+y=0\)
giúp mình vs, mik cảm ơn
\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ
Giải nghiệm nguyên của phương trình :
\( x^2+2xy+y^2+x+4y=0\)
giải phương trình nghiệm nguyên:
2x² + 2y² + 2xy -2x + 2y + 2 = 0
2x² + 2y² + 2xy -2x + 2y + 2 = 0
<=>x2+2xy+y2+x2-2x+1+y2+2y+1=0
<=>(x+y)2+(x-1)2+(y+1)2=0
<=>x-1=0 và y-1=0
<=>x=1 và y=-1
giải phương trình nghiệm nguyên
a, 2xy +4y - x = 5
b, 2x + y = xy - 3
giúp mk vs nha. mk tik cho.
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
\(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)\(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)\(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)\(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận
\(2xy+4y-x=5\)
\(\Rightarrow2y\left(x+2\right)-\left(x+2\right)=5-2\)
\(\Rightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta xét bảng
x+2 | 1 | -1 | 3 | -3 |
2y-1 | 3 | -3 | 1 | -1 |
x | -1 | -3 | 1 | -5 |
y | 2 | -1 | 1 | 0 |
Vậy.......................................................
\(2x+y=xy-3\)
\(\Rightarrow2x+y-xy=3\)
\(2x-2+y\left(x-1\right)=3-2\)
\(\Rightarrow2\left(x-1\right)+y\left(x-1\right)=1\)
\(\Rightarrow\left(2+y\right)\left(x-1\right)=1\)
\(\Rightarrow\left(x-1\right);\left(2+y\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét bảng
x-1 | 1 | -1 |
2+y | 1 | -1 |
x | 2 | 0 |
y | -1 | -3 |
Vậy..........................
giải phương trình nghiệm nguyên X^2+2XY+X+Y^2+4Y=0
Giải phương trình nghiệm nguyên : \(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)
giải phương trình nghiệm nguyên sau
\(5\left(2x^2y+2x+2xy^2+y\right)-49=49x\)
phải là 5(2x2y+2x+2xy2+y)-49=49x chứ