Tìm giá trị nhỏ nhất của:
B= ( 2x2 + 1)4 - 3
C= \(\left|\frac{1}{2}\right|\) + (y+2)2 + 11
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1-x^2y^2\right)^2\)
tìm giá trị nhỏ nhất
A= \(\left(2x^2+1\right)^4-3\)
B= \(x^2+3\left|y-2\right|-1\)
C= \(\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)
cho \(x^2+y^2=4\)
tìm giá trị nhỏ nhất \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)2\)
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
\(=x^2+y^2+\frac{2x}{y}+\frac{2y}{x}+\frac{1}{x^2}+\frac{1}{y^2}\)
\(=4+\frac{2x^2+2y^2}{xy}+\frac{x^2+y^2}{x^2y^2}\)
\(=4+\frac{8}{xy}+\frac{4}{x^2y^2}\)
\(=\left(2+\frac{2}{xy}\right)^2\ge0\)
vậy giá trị nhỏ nhất của A là 0.
Nếu phải tìm dấu bằng thì ta rút y theo x rồi thay vào pt đầu ra đc 2 nghiệm x1,x2
lop 1 da hoc cai nay dau
nè mày lớp mấy
mà lại đố mấy bọn lớp 1
điên thậy rồi
đúng là con điên mày biết tao lớp mấy không
đai học đấy
đúng là thằng điên
nè tao nói cho mày biết nha
mày là thàng điên
em tao nói mày lag chị điên đấy mà này mày là con nhà ngheo hay là con nhà giàu đấy
tao là con nhà giàu tao có 4 cái xe ô tô đó
hình như là con nhà nghèo rồi
đồ nhà nghèo rách rám bẩn thỉu còn vô olm làm gì cái bọn nhà nghèo như mày chí có đi xúc phân thôi sớ hư:
Bài 1:Cộng các phân thưc sau(rút gọn):
P=\(\frac{1}{\left(y-z\right)\left(x^2-xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-xz\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
Bài 2:
a) Tìm giá trị nhỏ nhất của P=\(\frac{2\left(2x+1\right)}{x^2+2}\)
b) Tìm giá trị lớn nhất của Q=\(\frac{2x^2-4x+17}{x^2-2x+4}\)
các bạn giải nhanh cho mình nhé vì mình đang cần gấp
Mình nghĩ bạn viết hơi sai đề bài.
\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)
Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)
\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)
Khi đó:
\(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)
um, cảm ơn bạn Pham Van Hung, có lẽ là mình chép sai đầu bài
tìm giá trị lớn nhất , nhỏ nhất trên \(\left[\frac{1}{4};4\right]\)của \(y=\frac{1}{3}log_{\frac{1}{2}}^3x+log^2_{\frac{1}{2}}x-\left(3log_{\frac{1}{2}}x\right)+1\)
ta có
\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)
Đặt =\(t=\log_{\frac{1}{2}}x\) ta có
\(y=\frac{1}{3}t^3+t^2-3t+1\)
với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)
thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]
ta tính \(y'=t^2+2t-3\)
ta tính y'=0 suy ra t=1(loại);t=-3(loại)
ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)
vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\)
hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
3. Tìm x, y để
a) \(D=-\left(3x+\frac{1}{5}\right)^4+\left(-\left(\frac{1}{2}y+3\right)^2\right)^3+1963\)đạt giá trị lớn nhất
b) \(E=\left(x-2\right)^2+\left(y+8\right)^2-2015\)đạt giá trị nhỏ nhất
cho x, y dương. Tìm giá trị nhỏ nhất:
\(P=\left(\frac{x}{y+z}+\frac{1}{2}\right)\left(\frac{y}{z+x}+\frac{1}{2}\right)\left(\frac{z}{x+y}+\frac{1}{2}\right)\)