xét T=2/2+3/22+4/23+...+2015/22014. Hãy so sánh T với 3
Xét tổng T= \(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\).Hãy so sánh T với 3
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)
\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)
\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)
\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)
Mà \(\frac{1}{2^{2014}}>0\)
\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)
\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)
\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)
Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)
\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)
\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)
\(\Rightarrow\)\(T< 3\) ( đpcm )
Vậy \(T< 3\)
Bạn xem đúng không nhé, chúc bạn học tốt ~
Ta có : T = 2 1 2 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 2 1 T = 2 2 2 + 2 3 3 + 2 4 4 + ... + 2 2015 2015 T − 2 1 T = 2 1 2 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 − 2 2 2 + 2 3 3 + 2 4 4 + ... + 2 2015 2015 2 1 T = 1 + 2 2 3 + 2 3 4 + ... + 2 2014 2015 − 2 2 2 − 2 3 3 − 2 4 4 − ... − 2 2015 2015 2 1 T = 1 + 2 2 3 − 2 2 2 + 2 3 4 − 2 3 3 + ... + 2 2014 2015 − 2 2014 2014 − 2 2015 2015 2 1 T = 1 + 2 2 1 + 2 3 1 + ... + 2 2014 1 − 2 2015 2015 Đặt A = 2 2 1 + 2 3 1 + ... + 2 2014 1 2A = 2 1 + 2 2 1 + ... + 2 2013 1 2A − A = 2 1 + 2 2 1 + ... + 2 2013 1 − 2 2 1 + 2 3 1 + ... + 2 2014 1 A = 2 1 − 2 2014 1 Mà 2 2014 1 > 0 ⇒A = 2 1 − 2 2014 1 < 2 1 ⇔1 + A − 2 2015 2015 < 1 + 2 1 − 2 2014 1 − 2 2015 2015 ⇔ 2 1 T < 2 3 − 2 2014 1 + 2 2015 2015 Mà 2 2014 1 + 2 2015 2015 > 0 ⇒ 2 1 T < 2 3 ⇒ 2 1 T.2 < 2 3 .2 ⇒T < 3 ( đpcm ) Vậy T < 3 Bạn xem đúng không nhé, chúc bạn học tốt ~
Xét tổng S gồm 20 số hạng:
S=1/1×2×3×4+1/2×3×4×5+...+1/20×21×22×23.
Hãy so sánh tổng S với 1/18
cậu ko giúp cậu ấy thì thôi đừng bảo như thế
xé tổng T=2/2^1+3/2^2+4/2^3+...+2015/2^2014. Hãy so sánh Tvới 3
cho tổng T= \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}\) +...+\(\dfrac{2016}{2^{2015}}+\dfrac{2017}{2^{2016}}\)
so sánh T với 3
uk, cái bạn tên Phong Thần công nhận giỏi thật nha
S =1 / 21 + 1/ 22 + 1/ 23 + ... + 1 / 149 + 1 / 150
hãy so sánh S với 3/ 4
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
Cho S=1/5+2/5^2+3/5^3+4/5^4+....+2015/5^2015 . Hãy so sánh S với 1/3
1853567804232223
Cho T=2/2^1+3/2^2+....+2016/2^2015+2017/2^2016
So sánh T với 3
Giúp mình bài này nha mọi người
Cho tổng T = 2/2^1 + 3/2^2 + 4/2^3 + ... +2016/2^2015 + 2017/2^2016
So sánh T với 3
`Answer:`
\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)
\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)
\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)
Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)
`=>T<3`
B=1\1×2×3×4+1\2×3×4×5+.....+1\21×22×23×24
So sánh B với 1\18