Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Nhật Thiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 6 2020 lúc 23:23

Gọi \(M\left(x;y;0\right)\) \(\Rightarrow OM^2=x^2+y^2\)

\(d^2\left(M;\left(\alpha\right)\right)=\frac{\left(x+2y+4\right)^2}{9}\) ; \(d^2\left(M;\left(\beta\right)\right)=\frac{\left(2x-2y-13\right)^2}{9}\)

\(\left(x+2y+4\right)^2=\left(2x-2y-13\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2y+4=2x-2y-13\\x+2y+4=-2x+2y+13\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4y+17\\3x=9\Rightarrow x=3\end{matrix}\right.\)

Th1: \(\left\{{}\begin{matrix}x=3\\x^2+y^2=\frac{\left(x+2y+4\right)^2}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\9y^2+81=4y^2+28y+49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\5y^2-28y+32=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(3;4;0\right)\\M\left(3;\frac{8}{5};0\right)\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x=4y+17\\x^2+y^2=\frac{\left(x+2y+4\right)^2}{9}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4y+17\\\left(4y+17\right)^2+y^2=\left(2y+7\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4y+17\\13y^2+108y+240=0\end{matrix}\right.\) (vô nghiệm)

Bạn kiểm tra lại tính toán

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
22 tháng 5 2017 lúc 16:12

Ta có \(\overrightarrow{n}_{\beta}=\left(1;3k;-1\right);\overrightarrow{n}_{\gamma}=\left(k;-1;1\right)\)

Gọi \(d_k=\beta\cap\gamma\)

Ôn tập chương III

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2019 lúc 14:35

Chọn đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 10 2017 lúc 10:49

Đáp án B

Điểm M(x,y,z) cách đều hai mặt phẳng (P) và (Q) khi và chỉ khi:

d(M ; (P)) = d(M ; (Q))

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 16:17

Hình giải tích trong không gian

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 12 2019 lúc 14:35

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 3 2019 lúc 13:17

Điểm cần tìm M(x;y;z) ta có điều kiện cách đều hai mặt phẳng là

Vậy tập hợp các điểm này nằm trên hai mặt phẳng vuông góc với nhau (hai mặt phẳng này được gọi là mặt phẳng phân giác của góc tạo bởi hai mặt phẳng).

Chọn đáp án C.

Chọn đáp án C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2017 lúc 3:03

Ta có: M(x, y, z) ∈ (P)

⇔ d(M, ( P 1 )) = d(M, ( P 2 ))

⇔|2x + y + 2z + 1| = |2x + y + 2z + 5|

⇔ 2x + y + 2z + 1 = – (2x + y + 2z + 5)

⇔ 2x + y + 2z + 3 = 0

Từ đó suy ra phương trình của (P) là: 2x + y + 2z + 3 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2018 lúc 14:38

Chọn đáp án A