Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đa Tiến
Xem chi tiết
Nguyễn Anh Quân
29 tháng 11 2017 lúc 21:56

S = (1+5)+(5^2+5^3)+(5^4+5^5)+(5^6+5^7)

   = 6+5^2.(1+5)+5^4.(1+5)+5^6.(1+5)

   = 6+5^2.6+5^4.6+5^6.6

   = 6.(1+5^2+5^4+5^6) chia hết cho 6

=> ĐPCM

k mk nha

Zintubin Gaming VN
29 tháng 11 2017 lúc 21:57

(1+5)+(5^2+5^3)+........+(5^6+5^7)

=6+5^2(1+5)+......+5^6(1+5)

=6+5^2 . 6 +.....+5^6 . 6

= 6 ( 5^2+.....+5^6)

Suy ra S chia hết cho 6

Ƹ̴Ӂ̴Ʒ ♐  ๖ۣۜMihikito ๖ۣ...
29 tháng 11 2017 lúc 22:01

\(S=\left(1+5\right)+\left(5^2+5^3\right)+\left(5^4+5^5\right)+\left(5^6+5^7\right)\)

\(=6+5^2\times6+5^4\times6+5^6\times6\)

\(=6\left(1+5^2+5^4+5^6\right)\)chia hết cho 6

=> S chia hết cho 6 =>ĐPCM

Phạm Hương Giang
Xem chi tiết

\(S=5+5^2+5^3+5^4+...+5^{2004}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(S=5.6+5^3.6+...+5^{2003}.6\)

\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6 

Anh2Kar六
20 tháng 2 2018 lúc 8:52

S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
        
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2  chia hết cho 65
Vậy S chia hết cho 65

Bùi Vương TP (Hacker Nin...
20 tháng 9 2018 lúc 15:36

(2004-1):1+1=2004(số hạng)

Vì 2004=4.501 nên ta viết S thành 501 nhóm mỗi nhóm có 4 số hạng như sau:

S=(5+5^2+5^3+5^4)+...+(5^2001+5^2002+5^2003+5^2004)

S=5.(1+5+5^2+5^3)+...+5^2001.(1+5+5^2+5^3)

S=5.156+...+5^2001.156

S=5.26.6+...+5.26.6.5^2000

S=130.6+...+130.6.5^2000

S=130.(6+...+6.5^2000)

S chia hết cho 130 (ĐPCM)

ichigo
Xem chi tiết
Phú Quý Lê Tăng
14 tháng 10 2018 lúc 12:37

a)\(\overline{abcabc}=1001\cdot\overline{abc}=...\)chưa chứng minh được chia hết cho 3, bạn kiểm tra lại đề nhé.

Chắc là đề cho \(\overline{abc}⋮3\)

b)\(S=5+5^2+5^3+...+5^{2004}=\left(5^1+5^4+5^2+5^5+5^3+5^6\right)+...+\left(5^{1999}+..+5^{2001}+5^{2004}\right)\)

Cứ 2 số hạng liền kề nhau trong tổng trên đều chia hết cho 5+125=130, tức là đều chia hết cho 65.

Còn chứng minh chia hết cho 125 thì mình thấy hơi lạ, mình không làm được.

Chúc bạn học tốt!

Nông Thị Hường
Xem chi tiết
Trần Việt Hoàng
24 tháng 1 2016 lúc 17:58

tất cả các số hang cua dãy đều chia hết cho 5 nên S 3 chấm 65

Nobita Kun
24 tháng 1 2016 lúc 17:59

S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012  (2012 số)

S = (5 + 52 + 53 + 54) + (55 + 56 + 57 + 58) +...+ (52009 + 52010 + 52011 + 52012)   (503 nhóm)

S = (5 + 52 + 53 + 54) + 54(5 + 52 + 53 + 54) +....+ 52008(5 + 52 + 53 + 54)

S = 780 + 54.780 +...+ 52008.780

S = 780.(1 + 54 +...+ 52008) chia hết cho 65 (Vì 780 chia hết cho 65)

Zz Victor_Quỳnh_Lê zZ
24 tháng 1 2016 lúc 18:07

minh dong y cau tra loi cua nobita kun

gintoki hoydou
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 16:13

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Trần Hoàng Trung Hải
Xem chi tiết
Yen Nhi
3 tháng 12 2021 lúc 21:42

Answer:

\(S=\left(1+5^2+5^4+5^6\right)+...+\left(5^{2014}+5^{2016}+5^{2018}+5^{2020}\right)\)

\(=\left(1+5^2+5^4+5^6\right)+...+5^{2014}+\left(1+5^2+5^4+5^6\right)\)

\(=\left(1+5^2+5^4+5^6\right).\left(1+...+5^{2014}\right)\)

\(=16276.\left(1+5^2+...+5^{2014}\right)⋮313\)

Mà ta có: \(S=16276⋮313\)

Vậy \(S⋮313\)

Khách vãng lai đã xóa
Thai Nguyen Quoc
Xem chi tiết
Nguyễn Huy Tú
6 tháng 4 2017 lúc 19:51
Nguyễn Thị Mỹ Duyên
Xem chi tiết
Phan Le Yen Nhi
Xem chi tiết
Nguyễn Thị Quỳnh Linh
Xem chi tiết