cho tam giác ABC có 3 góc nhọn AB nhỏ hơn AC gọi AH là đg cao và M;N;P lần lượt là trung điểm của AB AC và BC gọi D là điểm đối xứng với H qua M
a) cmr : DAHB là hcn
B ) tìm điều kiện để AMPN là hcn
cho am giác abc vuông góc tại a,có ab nhỏ hơn ac ,đg cao ah ,gọi m n lần lượt là hình chiếu của ab ac
a c/m mn=ah
b am.ab=an.ac
Cho tam giác ABC AB nhỏ hơn AC , có 3 góc nhọn và đường cao AH. Qua H vẽ HM vuông góc với AC tại M và HN vuông góc với AC tại N.a Cho AC 6cm, AM 3cm. Chứng minh diện tích tam giác ACB gấp 4 lần tam giác AMNb Vẽ đường cao BD của tam giác ABC cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh góc AEF = ABC
Giúp toei vs
Cho tam giác nhọn ABC có AB>AC .đường cao AH .
a) Cm HB>HC
b) ss góc BAH và CAH
c) Vẽ M,N sao cho AB,AC, lần lượt là đg trung trực của HM,HN.Cm tam giác MAN là tam giác cân
Cho tam giác ABC có 3 góc nhọn, nội tiếp (O) (AB< AC ) . Các đg cao AD và CF của tam giác ABC cắt nhau tại H.
a) CM: tứ giác BFHD nội tiếp. Suy ra góc AHC = 180 - góc ABC
b) Gọi M là điểm bất kì trên cung nhỏ BC của (O) ( M # B và C ) và N là điểm đối xứng của M qua AC. CM: tứ giác AHCN nội tiếp
Cho tam giác ABC (AB nhỏ hơn AC), có 3 góc nhọn và đường cao AH. Qua H vẽ HM vuông góc với AC tại M và HN vuông góc với AC tại N.
a) Cho AC = 6cm, AM = 3cm. Chứng minh diện tích tam giác ACB gấp 4 lần tam giác AMN
b) Vẽ đường cao BD của tam giác ABC cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh góc AEF = ABC
ác, cực ác , ác cực
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Vẽ các đg cao AD, BE, CF của tam giác ABC cắt nhau tại H. Kẻ đg kính AM.
a) Cm tứ giác BHCM là hình bình hành
b) Gọi I là giao điểm HM và BC. Cm OI vuông góc BC và AH = 2OI
c) Gọi G là trọng tâm tam giác ABC. Cm O, G, H thẳng hàng.
d) Cm SAGH= 2SAGO
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
cho tam nhọn abc (ab nhỏ hơn ac) các đương cao ad be cf cắt nhau tại h
1.chứng minh tam giác eab đồng dạng với tam giác afc và ae.ac=af.ab
2.gọi I là trung điểm của canh BC .Đường thẳng đi qua I và vuông góc với IH cắt AC ,AH,AB lần luotj tại M,K,N
A.chứng minh AM.BI-BH.AK
B.chứng minh rằng NK/EI=MN/BC
cho tam giác ABC .Có ABvuông góc tại A ,có AB nhỏ hơn AC, đg cao AH(h thuộc BC)
a) C/M AB2 =BH.BC
b)C/M AD.BC=DC.AB giúp mình với ạ
a,xét hai tam giác đòng dạng:ABH và ABC(g.g)
=>\(\dfrac{BH}{AB}\)=\(\dfrac{AB}{BC}\)=> đpcm
b,cm theo diện tích của tam giác vuông
Cho tam giác ABC có 3 góc nhọn ( AB<AC ), các đường cao AD, BE, CF cắt nhau tại H.
a) CM : Tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) CM : Tam giác AEF đồng dạng tam giác ABC và góc AEF = góc ABC
c) Gọi I là trung điểm của AH, M là trung điểm của BC. CM : MI vuông góc EF
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AE/AB=AF/AC và AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
=>góc AEF=góc ACB
c; góc AFH=góc AEH=90 độ
=>AFHE nội tiếp (I)
=>IF=IE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp (M)
=>MF=ME
=>MI là trung trực của EF
=>MI vuông góc EF