Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khang Nguyễn
Xem chi tiết
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Dora  Wan
20 tháng 11 2018 lúc 19:56

Mình không biết

๖ۣۜmạnͥh2ͣkͫ5ツ
20 tháng 11 2018 lúc 19:58

ko bt thì  ko nói nha mình đang cần gấp lém xin đừng trêu

Tuấn Nguyễn
21 tháng 11 2018 lúc 12:08

\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=a\left(b+c\right)^2-\left(b-c\right)-b\left(c+a\right)^2\left(b-c+a-b\right)+c\left(a+b\right)^2\left(a-b\right)\)

\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(a+b\right)^2\right]\)

\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-cb^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab\right)-\left(a-b\right)\left(b-c\right)\left(a^2-bc\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab-a^2+bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

Hoàng Việt Anh
Xem chi tiết
Hoàng Việt Anh
12 tháng 5 2020 lúc 20:32

tk mình đi mình giải cho 

Khách vãng lai đã xóa
Nguyễn Khánh Duy
Xem chi tiết
Lê Hoàng Minh +™( ✎﹏TΣΔ...
29 tháng 8 2021 lúc 21:42

phân tích đa thức thành nhân tử

a^2(b-c)+b^2(c-a)+c^2(a-b)

= -(b-a)(c-a)(c-b)

nha bạn

Khách vãng lai đã xóa
Trần Đức Huy
30 tháng 8 2021 lúc 8:27

a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2(a-b)

=(a2b-b2a)-(a2c-b2c)+c2(a-b)

=ab(a-b)+c(a2-b2)+c2(a-b)

=ab(a-b)+c(a-b)(a+b)+c2(a-b)

=(a-b)(ab+ac+bc+c2)

=(a-b)[(ab+bc)+(ac+c2)]

=(a-b)[b(a+c)+c(a+c)]

=(a-b)(a+c)(b+c)

Khách vãng lai đã xóa
Trần Đức Huy
30 tháng 8 2021 lúc 8:40

câu này mới đúng, câu trên mình sai

a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2(a-b)

=(a2b-b2a)-(a2c-b2c)+c2(a-b)

=ab(a-b)-c(a2-b2)+c2(a-b)

=ab(a-b)-c(a-b)(a+b)+c2(a-b)

=(a-b)(ab-ac-bc+c2)

=(a-b)[a(b-c)-c(b-c)]

=(a-b)(a-c)(b-c)

Khách vãng lai đã xóa
đoàn mạnh  trí
Xem chi tiết
Nguyễn Chí Công
Xem chi tiết
Huỳnh Minh Long
Xem chi tiết
thu trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2022 lúc 21:23

\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)

\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)

\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)

\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Ngọc Nguyễn
Xem chi tiết
nguyen thi bao tien
26 tháng 6 2019 lúc 17:28

\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)

\(=ab^2-ac^2-ba^2+bc^2+ca^2-cb^2\)

\(=\left(ab^2-ac^2-bc^2\right)-\left(ba^2-bc^2-ca^2\right)\)

\(=a\left(b^2-c^2\right)-bc^2-a^2\left(b-c\right)+bc^2\)

\(=a\left(b^2-c^2\right)-a^2\left(b-c\right)\)

\(=a\left(b-c\right)\left(b+c\right)-a^2\left(b-c\right)\)

\(=\left(b+c\right)\left[a\left(b-c\right)-a^2\right]\)

\(=\left(b+c\right)\left(ab-ac-a^2\right)\)

\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)

\(=c\left(a^2-b^2\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)

\(=-c\left[\left(b^2-c^2\right)+\left(c^2-a^2\right)\right]+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)

\(=\left(a-c\right)\left(b^2-c^2\right)+\left(b-c\right)\left(c^2-a^2\right)\)

\(=\left(a-c\right)\left(b-c\right)\left(b+c\right)+\left(b-c\right)\left(c-a\right)\left(c+a\right)\)

\(=\left(a-c\right)\left(b-c\right)\left(b-a\right)\)