phân tích đa thức thành nhân tử a(a+b)^2(a-b)+b(b+c)^2(b-c)+c(c+a)^2(c-a)
Phân Tích Đa Thức thành nhân tử 3abc+a^2(a-b-c)+b^2(b-a-c)+c^2(c-a-b)-c(b-c)(a-c)
Phân tích đa thức sau thành nhân tử a(b+c)^2(b-c) +b(c+a)^2(c-a) +c(a+b)^2(a-b)
ko bt thì ko nói nha mình đang cần gấp lém xin đừng trêu
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=a\left(b+c\right)^2-\left(b-c\right)-b\left(c+a\right)^2\left(b-c+a-b\right)+c\left(a+b\right)^2\left(a-b\right)\)
\(=\left(b-c\right)\left[a\left(b+c\right)^2-b\left(c+a\right)^2\right]-\left(a-b\right)\left[b\left(c+a\right)^2-c\left(a+b\right)^2\right]\)
\(=\left(b-c\right)\left(ab^2+ac^2-bc^2-ba^2\right)-\left(a-b\right)\left(bc^2+ba^2-ca^2-cb^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab\right)-\left(a-b\right)\left(b-c\right)\left(a^2-bc\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(c^2-ab-a^2+bc\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
phân tích đa thức sau thành nhân tử (a+b)^2(a-b)+(b+c)^2(b-c)+(c+a)^2(c-a)
tk mình đi mình giải cho
phân tích đa thức thành nhân tử a^2(b-c)+b^2(c-a)+c^2(a-b)
phân tích đa thức thành nhân tử
a^2(b-c)+b^2(c-a)+c^2(a-b)
= -(b-a)(c-a)(c-b)
nha bạn
a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2(a-b)
=(a2b-b2a)-(a2c-b2c)+c2(a-b)
=ab(a-b)+c(a2-b2)+c2(a-b)
=ab(a-b)+c(a-b)(a+b)+c2(a-b)
=(a-b)(ab+ac+bc+c2)
=(a-b)[(ab+bc)+(ac+c2)]
=(a-b)[b(a+c)+c(a+c)]
=(a-b)(a+c)(b+c)
câu này mới đúng, câu trên mình sai
a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2(a-b)
=(a2b-b2a)-(a2c-b2c)+c2(a-b)
=ab(a-b)-c(a2-b2)+c2(a-b)
=ab(a-b)-c(a-b)(a+b)+c2(a-b)
=(a-b)(ab-ac-bc+c2)
=(a-b)[a(b-c)-c(b-c)]
=(a-b)(a-c)(b-c)
phân tích đa thức thành nhân tử
a*(b+c)^2*(b-c)+b*(c+a)^2*(c-a)+c*(a+b)^2*(a-b)
phân tích đa thức thành nhân tử a(b+c)(b^2-c^2)+b(a+c)(c^2-a^2)+c(a+b)(a-b)
Phân tích đa thức thành nhân tử
a(b - c)^2 + b(c -a)^2 + c(a - b)^2 - a^3 - b^3 – c^3 + 4abc
Phân tích đa thức sau thành nhân tử: a^2 (b-c)+b^2(c-a)+c^2(a-b)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=\left(a^2b-b^2a\right)-\left(a^2c-b^2c\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)\)
\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
phân tích đa thức thành nhân tử: a(b^2-c^2)-b(a^2-c^2)+c(a^2-b^2)
\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)
\(=ab^2-ac^2-ba^2+bc^2+ca^2-cb^2\)
\(=\left(ab^2-ac^2-bc^2\right)-\left(ba^2-bc^2-ca^2\right)\)
\(=a\left(b^2-c^2\right)-bc^2-a^2\left(b-c\right)+bc^2\)
\(=a\left(b^2-c^2\right)-a^2\left(b-c\right)\)
\(=a\left(b-c\right)\left(b+c\right)-a^2\left(b-c\right)\)
\(=\left(b+c\right)\left[a\left(b-c\right)-a^2\right]\)
\(=\left(b+c\right)\left(ab-ac-a^2\right)\)
\(a\left(b^2-c^2\right)-b\left(a^2-c^2\right)+c\left(a^2-b^2\right)\)
\(=c\left(a^2-b^2\right)+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)
\(=-c\left[\left(b^2-c^2\right)+\left(c^2-a^2\right)\right]+a\left(b^2-c^2\right)+b\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b^2-c^2\right)+\left(b-c\right)\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b-c\right)\left(b+c\right)+\left(b-c\right)\left(c-a\right)\left(c+a\right)\)
\(=\left(a-c\right)\left(b-c\right)\left(b-a\right)\)