1, tìm gía trị lớn nhất của biểu thức :
A= -X +4X +3.
giúp mk với
Tìm gía trị lớn nhất của biểu thức :
A=1997+/x+4/
Tìm giá trị nhỏ nhất của biểu thức :
B=-/21phần 7 x+1/-170
giúp mik với nha các bạn <3
Tìm giá trị lớn nhất của các biểu thức sau:
a, D= 5 - 8x- x^2
b, E= 4x - x^2 +1
Giúp mk với ạ
\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)
\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)
a) D = 5 - 8x - x^2
Để hoàn thành bình phương, ta cần thêm một số vào biểu thức để biến thành một biểu thức có dạng (x - h)^2. Ta có thể thêm 16 vào cả hai phía của biểu thức:
D + 16 = 5 - 8x - x^2 + 16
= 21 - 8x - x^2
Biểu thức trên có thể viết lại thành (x - 4)^2 - 5:
D + 16 = (x - 4)^2 - 5
Để tìm giá trị lớn nhất của D, ta cần tìm giá trị nhỏ nhất của (x - 4)^2. Vì (x - 4)^2 luôn không âm, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của D là 0 - 5 = -5.
Vậy giá trị lớn nhất của biểu thức a là -5.
b) E = 4x - x^2 + 1
Tương tự như trên, ta thêm 4 vào cả hai phía của biểu thức:
E + 4 = 4x - x^2 + 1 + 4
= 5 - x^2 + 4x
Biểu thức trên có thể viết lại thành -(x - 2)^2 + 9:
E + 4 = -(x - 2)^2 + 9
Để tìm giá trị lớn nhất của E, ta cần tìm giá trị nhỏ nhất của -(x - 2)^2. Vì -(x - 2)^2 luôn không dương, giá trị nhỏ nhất của nó là 0. Do đó, giá trị lớn nhất của E là 0 + 9 = 9.
Vậy giá trị lớn nhất của biểu thức b là 9.
a )tìm giá trị lớn nhấy của hàm số y=-3/5 x nếu -5 <hoặc = x < hoặc = 2014
b) tìm số nguyên x để biểu thức A=4x-5 / 3x + 2 có giá trị lớn nhất. tìm gía trị lớn nhất đó
giúp mình vs các bạn ơi ai nhanh mình tích cho
Cho biểu thức P= 2014 + 540 : ( x - 6 )
Tìm gía trị của số tự nhiên x để biểu thức P có gía trị lớn nhất, nhỏ nhất.
Tìm gía trị lớn nhất, nhỏ nhất đó.
De P lon nhat thi 540 : (x-6) lon nhat. De 540:(x-6) lon nhat thi x-6 nho nhat. x-6 nho nhat th x-6=1=>x=1+6=7
De P nho nhat thi 540 :(x-6) nho nhat. De 540 nho nhat thi x-6 lon nhat. de x-6 lon nhat thi x-6=540=>x=546
1 tìm gí trị nhỏ nhất của biểu thức
A= l x - 6 l + 15
B = (x - 3)2 - 20
C = x2 - 4x +2
2 tìm gí trị lớn nhất của biểu thức
D = -3 - l x +3 l
E = 15 - ( x +1)2
mn giúp mk bài này vs
ai nhanh nhất mk k và thank you nhen
A = |x - 6| + 15
Có: |x - 6| \(\ge\)0. Dấu ''='' xảy ra khi x - 6 = 0 => x = 6.
Vậy GTNN của A = |x - 6| + 15 là 15 khi x = 6.
B = (x - 3)2 - 20
Có: (x - 3)2 \(\ge\)0. Dấu ''='' xảy ra khi x - 3 = 0 => x = 3.
Vậy GTNN của B là -20 khi x = 3.
1/ Tìm giá trị nhỏ nhất của biểu thức B= 2I3x-6I - 4
2/ Tìm x thuộc Z để biểu thức D= I x-2 I + I x-8 I đạt Gía trị nhỏ nhất
3/ Tìm GTNN của biểu thức B = I x-2017 I + I x-1 I
A= I x-2017 I + I x-2 I
4/ với giá trị nào của x,y thì biểu thức C = I x-100 I + I y+20 I - 1 có giá trị nhỏ nhất . Tìm GTNN
5/ Với giá trị nào của x thì biểu thức A= 100 - I x+5 I có giá trị lớn nhất. Tính GTLN đó
giúp với ạ ._.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Gía trị lớn nhất biểu thức C=3/ |x-1|+(x-1)4+1+1/2 là:
Nhanh mk tick
Đề là
\(C=\frac{3}{\left|x-1\right|+\left(x-1\right)4+1}+\frac{1}{2}.\)
hay là :
\(C=\frac{3}{\left|x-1\right|+\left(x-1\right)4+1+\frac{1}{2}}\)
\(C=\frac{3}{\left|x+1\right|+\left(x-1\right)^4+1}+\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left(x-1\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^4\ge0\)
\(\Rightarrow\left|x-1\right|+\left(x-1\right)^4+1\ge1\)
\(\Rightarrow\frac{3}{\left|x-1\right|+\left(x-1\right)^4+1}\le\frac{3}{1}=3\)
\(\Rightarrow\frac{3}{\left|\text{x}-1\right|+\left(x-1\right)^4+1}+\frac{1}{2}\le3+\frac{1}{2}=\frac{7}{2}\)
hay \(MaxC=\frac{7}{2}\)
Dấu "=" xảy ra khi \(\left|x-1\right|=\left(x-1\right)^4=0\)
\(\Rightarrow x-1=0\)
\(x=1\)
Vậy \(MaxC=\frac{7}{2}\) tại \(x=1\).
để C có giá trị lớn nhất thì
\(\frac{3}{|x-1|+\left(x-1\right)4+1}\)lớn nhất và sẽ luôn có nghĩa với \(x\inℤ\)
=>\(|x-1|+\left(x-1\right)4+1\)nhỏ nhất và >0=>\(|x-1|+\left(x-1\right)4+1\)=1
=>\(|x-1|+\left(x-1\right)4\)=0
=>x=0
=>c=\(\frac{7}{2}\)
Các bạn giúp mk giải bài này với:
a)Tìm giá trị nhỏ nhất của biểu thức
A=|x+2|+|9-x|
b)Tìm giá trị lớn nhất của biểu thức:
B=3/4-(x-1)2
Các bạn ơi mk cần gấp ạ!Cảm ơn!
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
Gía trị lớn nhất của biểu thức \(A=\frac{2014}{2x^2-4x+2014}\)tại x=...