tìm stn nhỏ nhất sao cho số đó chia cho 3 dư 1;chia 4 dư 2;chia 5 dư 3;chia 6 dư 4 và chia hết cho 11
Tìm STN nhỏ nhất sao cho số đó chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 11.
Gọi số cần tỉm là a.
Theo đề bài, ta có: a + 2 chia hết cho 3 ; 4 ; 5 ; 6
Suy ra: a + 2 là BC ( 3 ; 4 ; 5 ; 6 )
BCNN ( 3 ; 4 ; 5 ; 6 ) = 60 => a + 2 = 60 . n
Do đó: a = 60 . n - 2 ; N = { 1 ; 2 ; 3 ; 4 }
Mặt khác a chia hết cho 11 lần lượt cho 1 ; 2 ; 3 ....
Ta thấy N = 7 => a = 418 chia hết cho 11.
Vậy số cần tìm là 418.
@@
gọi số đó là a
a:3 dư 1 a:4 dư 2
=> a-1 chia hết cho 3 => a-2 chia hết 4
a-1+3 chia hết cho 3 a-2+4 chia hết 4
a+2 chia hết cho 3 a+2 chia hết 4
a:5 dư 3 a:6 dư 4
=> a-3 chia hết 5 a-4 chia hết 6
a-3+5 chia hết 5 a-4+6 chia hết 6
a+2 chia hết 5 a+2 chia hết 6
=> a+2 chia hết 3;4;5;6
BCNN(3;4;5;6)=60
=> a=62
tìm STN nhỏ nhất sao cho số đó chia cho 3 dư 1 , chia cho 4 dư 2, chia cho 5 dư 3 , chia cho 6 dư 4 và chia hết cho 11
Gọi số cần tìm là x (x thuộc N)
Vì số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4
=> x+2 chia hết cho 2,3,4,5,6
Vì x là số tự nhiên nhỏ nhất thỏa mãn điều kiện => x+2 là bcnn(2,3,4,5,6);
=> x+2=60
=>x=58
vậy số cần tìm là 58
1.STN nhỏ nhất chia cho 6 dư 5 nhưng chia cho 19 dư 2
a) Tìm STN nhỏ nhất có tính chất trên.
b) Tìm dạng tổng quát của các STN có tính chất trên
2. Một STN chia cho 5 dư 1, chia cho 21 dư 3
a) Tìm STN nhỏ nhất có tính chất trên.
b) Hỏi số đó chia cho 105 dư bao nhiêu?
c) Số đó chia cho 35 dư bao nhiêu?
a, Vì số đó chia cho 6 dư 5; chia 19 dư 2 nên khi ta thêm vào số đó 55 đơn vị thì trở thành số chia hết cho cả 6 và 19
Ta có: \(\left\{{}\begin{matrix}a+55⋮6\\a+55⋮19\end{matrix}\right.\) ⇒ a + 55 \(\in\) BC(6; 19)
6 = 2.3; 19 = 19; BCNN(6; 19) = 2.3.19 = 114
⇒ BC(6; 19) = {0; 114; 228; 342;...;}
a \(\in\) { - 55; 59; 173;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 59
a + 55 \(\in\) B(114)
⇒ a = 114.k - 55 (k ≥1; k \(\in\) N)
Bài 2:
Vì số đó chia 5 dư 1 chia 21 dư 3 nên khi số đó thêm vào 39 đơn vị thì trở thành số chia hết cho cả 5 và 21
Ta có: a + 39 ⋮ 5; a + 39 ⋮ 21 ⇒ a + 39 \(\in\) BC(5; 21)
5 = 5; 21 = 3.7 BCNN(5; 21) = 3.5.7 = 105
⇒BC(5; 21) = {0; 105; 210;...;}
a+ 39 \(\in\) {0; 105; 210;...;}
a \(\in\) {-39; 66; 171;...;}
Vì a là số tự nhiên nhỏ nhất nên a = 66
a + 39 ⋮ 105
⇒ a = 105.k - 39 (k ≥1; k \(\in\) N)
Bài 2, ý b
66 : 105 = 0 dư 66
Vậy số đó chia 105 dư 66
66 : 35 = 1 dư 31
Vậy số đó chia 35 dư 31
tìm stn nhỏ nhất sao cho số đó chia hết cho 3 dư 1 , chia 4 dư 2 , chia 5 dư 3 , chia 6 dư 4 và chia hết cho 11
Số đó là: 288
Tui nè
Quen nè
Hôm nay thi nè
Tìm STN nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1 và chia cho 7 thì không dư?
Gọi số cần tìm là n => (n - 1) chia hết cho 3, 4, 5 tức chia hết cho 3*4*5 = 60 (do 3, 4, 5 nguyên tố cùng nhau từng đôi một) => n - 1 = 60k => n = 60k + 1 chia hết cho 7, với k > 0.
Gọi r là số dư khi chia k cho 7 ta có k = 7m + r (1 ≤ r ≤ 6) => n = 420m + 60r + 1 chia hết cho 7. Dễ kiểm nghiệm là chỉ với r = 5 có (60r + 1) chia hết cho 7
=> n = 420m + 301
Số n nhỏ nhất ứng với m = 0 => min(n) = 301
Tìm STN nhỏ nhất có 3 chữ số sao cho số đó chia cho 11 thì dư 5 chia cho 13 thì dư 8
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Tìm STN nhỏ nhất biết số đó chia cho 2 dư 1,chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4.
Gọi số cần tìm là A. Vì A chia cho 2 dư 1 và A chia cho 5 dư 4 nên A + 1 đồng thời chia hết cho 2 và 5. Vậy chữ số tận cùng của A + 1 là 0. Hiển nhiên A +1 không thể có 1 chữ số. Nếu A + 1 có 2 chữ số thì có dạng x0. Vì x0 chia hết cho 3 nên x chỉ có thể là 3 ; 6 ; 9 ta có số 30 ; 60 ; 90. Trong 3 số đó chỉ có 60 là chia hết cho 4 .
Vậy SCT là : 60-1 =59
Đáp số: 59
Tìm STN nhỏ nhất, biết rằng số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia cho 10 dư 8.
mình đánh lộn số 68
nha bạn
cho minh dung nha
Tìm STN nhỏ nhất sao cho số đó chia cho 3,4,5 đều dư 1 và chia 7 thì ko dư
Giups mk nhanh nha