Tìm x nguyên để biểu thức đạt GTNN :
\(N=\frac{x+1}{2-x}\)
Cho biểu thức P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Tìm điều kiện để P xác định và rút gọn P.
b) Tìm các giá trị nguyên của x để P đạt giá trị nguyên.
c)Tìm giá trị của x để P đạt GTNN, tìm giá trị nhỏ nhất đó.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
kkk. thế mới hỏi chứ. đề đấy: đố giải được
Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{^{x^2}}-\frac{8}{x}+1}}\)
a) Tìm x để A đạt GTNN
b) Tìm các giá trị nguyên của x để A nguyên
Giải hộ mik 2 câu này nhé, giải xong nhớ giải thích nữa nha! (Mình kém dạng toán này lắm!)
Bài 1: Tìm x nguyên để các biểu thức sau đạt GTNN:
\(D=\frac{x+5}{\left|x-4\right|}\)
Bài 2: Tìm x nguyên để biểu thức sau đạt GTLN:
\(P=2010-\left(x+1\right)^{2008}\)
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)
\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)
Vậy \(x=-1\)thì \(B_{max}=2010\)
Bài 1:
\(D=\frac{x+5}{|x-4|}\)
Ta có: \(|x-4|\ge0\forall x\)
\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Vì 1 không đổi
Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN
\(\Rightarrow x-4\)phải đạt GTLN
\(\Rightarrow x=13\)
GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)
Vậy x=3 thì D đạt GTNN
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)
\(\Rightarrow P\le2010\)
\(\Rightarrow\)GTLN của P=2010
\(\Leftrightarrow\left(x+1\right)^{2008}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x=-1 thì P đạt GTLN
Tìm n nguyên để biểu thức sau đạt GTNN
A = ( x-1)^2 + 2008
B = |x-4| + 1996
C = \(\frac{5}{x-2}\)
D = \(\frac{x+5}{x-4}\)
a;Ta có:
(x-1)^2 lớn hơn hoặc bằng 0
(x-1)^2 +2008 lớn hơn hoặc bằng 2008
Đẻ A nhỏ nhất thì
(x-1)^2 +2008 =2008
(x-1)^2 =0
x-1=0
x=1
Vậy A nhỏ nhất bằng 2008 khi x=1
b,Ta có:
|x-4| lớn hơn hoặc bằng 0
|x-4|+1996 lớn hơn hoặc bằng 1996
Để B nhỏ nhất thì
|x-4|+1996=1996
|x-4|=0
x=4
Vậy B nhỏ nhất bằng 1996 khi x=4
c, Để C nhỏ nhất thì x-2 lớn nhất âm
5 chia hết cho x-2
=>x-2=-1
x=1
Vậy C nhỏ nhất bằng -5 khi x=1
d, Ta có:
\(\frac{x+5}{x-4}=1+\frac{9}{x-4}\)
Để D nhỏ nhất thì 9 chia hết cho x-4 và x-4 lớn nhất âm
x-4=-1
x=3
Vậy D nhỏ nhất bằng -8 khi x=3
a)Tìm GTNN của biểu thức; A=|x+7|+|x-3|
b)Tìm giá trị nguyên của x để biểu thức B=7-x/x+1 đạt GTNN
Mình cần câu trả lời gấp
GIÚP MÌNH VỚI <3
i, tìm đkxđ của biểu thức
ii, tìm giá trị của x để A đạt GTNN
iii, tìm x nguyên để A nguyên
A=\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
Tìm giá trị của x để biểu thức : \(P=\frac{x^2+x+1}{x^2+2x+1}\left(x\ne-1\right)\) đạt GTNN
\(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)
\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)
\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)
Vậy \(Max_P=\frac{3}{4}\Leftrightarrow x=1\)
bài 1: tìm x biết |x+2| + |2x-3| = 5
bài 2: tìm GTNN của biểu thức A = |x-102| + |2-x|
bài 3: cho biểu thức A = 3/(x-1)
a/ Tìm số nguyên x để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
b/ tìm số nguyên x để A đạt giá trị lớn nhất và tìm giá trị lớn nhất đó
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.