Cho p,q là hai số nguyên tố lẻ liên tiếp với p < q, biết p + q = 2m. Chứng tỏ rằng m là hợp số.
Cho p, q là hai số nguyên tố lẻ liên tiếp với p < q, biết p + q = 2m. Chứng tỏ rằng m là hợp số.
Trình bày rõ cách giải nhé >w< Càng chi tiết càng tốt
Do p; q là 2 số nguyên tố lẻ liên tiếp nên giả sử p = 2.k + 1; q = 2.k + 3 (k ϵ N)
Ta có: p + q = 2m
=> 2.k + 1 + 2.k + 3 = 2m
=> 4.k + 4 = 2m
=> 2.k + 2 = m
=> 2.(k + 1) = m
\(\Rightarrow m⋮2\)
Mà 1 < 2 < m => m là hợp số (đpcm)
Cho p và q là hai số nguyên tố lẻ liên tiếp mà p+q=2n. Chứng minh rằng n là hợp số
không mất tổng quát ta giả sử p<q
vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)
do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)
do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số
Cho q,p là hai số nguyên tố liên tiếp, 2<p<q. Chứng tỏ rằng: q+p/2 là một hợp số
Giả sử p < q
Do (p+q)/2 là trung bình cộng của p và q
=> p < (p+q)/2 < q (1)
mà p và q là 2 số nguyên tố liên tiếp nên giữa p và q là các hợp số (2)
Từ (1) và (2) => (p+q)/2 là hợp số (ĐPCM)
Vì p, q nguyên tố > 2 nên p và q là số lẻ
Do đó p + q là số chẵn nên p+q/2 chẵn nên p+q/2 chia hết cho 2
mà 2<p<q nên p+q/2>2 nên p+q/2 là hợp số
p là số lẻ sao có p/2 đc? Hay là (p+q)/2 hả bạn?
Cho p>q là 2 số nguyên tố lẻ liên tiếp. Chứng minh rằng (p+q)2 là hợp số.
Cho p>q là 2 số nguyên tố lẻ liên tiếp. Chứng minh rằng (p+q)2 là hợp số.
ta co:
hai số nguyên tố p và q là hai số lẻ liên tiếp
=>tổng hai số nguyên tố p và q là một số chẵn
=>p+q chia hết cho 2
=>(p+q)2 cia hết cho 2
=>mà 2 là số nguyên tố
=>(p+q)2 là hợp số
nhớ tick đó nha
Giúp mình với .Ai trả lời được mình tick cho.Các bạn làm cả lời giải nhé
Cho P lớn hơn q là 2 số nguyen tố lẻ liên tiếp .Chứng tỏ rằng (p+q):2 là hợp số
Bài 1:Tìm số tự nhiên n sao cho 2^n+1 và 2^n-1 là số nguyên tố.
Bài 2:Tìm 3 số tự nhiên lẻ liên tiếp đồng thời là số nguyên tố.
Bài 3:Cho p là số nguyên tố ; p>3; q là số nguyên tố; q>3 và p>q. Chứng tỏ rằng (p^2-q^2) chia hết cho 24.
TRÌNH BÀY BÀI GIẢI GIÚP MÌNH NHA
a. tìm số nguyên tố p sao cho q + 74 và q + 1994 là các số nguyên tố
b. chứng minh rằng hai số lẻ liên tiếp bao giơ cũng nguyên tố cùng nhau
d. chứng minh rằng abcabc chia hết cho 7;11 và 13
c. abcabc=abc.1000+abc=abc.1001
Vì 1001 chia hết cho 7; 11 ;13 nên abcabc chia hết 7;11;13
đi rồi tôi làm tiếp
Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
dễ, gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3 (k thuộc N)
gọi d là UCLN(2k+1;2k+3) suy ra:2k+1chia hết cho d;2k+3 chia hết cho d suy ra : (2k+3)-(2k+1) chia hết cho d suy ra: 2 chia hết cho d suy ra d thuộc tập hợp Ư(2) suy ra d thuộc {1;2}
nhưng vì 2k+1;2k+3 là số lẻ nên không chia hết cho 2 suy ra d=1
VẬY:HAI SỐ LẺ LIÊN TIẾP NGUYÊN TỐ CÙNG NHAU