Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Hà Khánh Vân
Xem chi tiết
๖Fly༉Donutღღ
17 tháng 12 2017 lúc 19:32

sửa đề một chút :

\(4x^2+4x+5\)

\(=\left(2x\right)^2+2.2x+1+4\)

\(=\left(2x+1\right)^2+4\ge4\)

Dấu bằng xảy ra khi 2x + 1 = 0

                              2x       = -1

                                x       = -0,5

Vậy GTNN của biểu thức trên bằng 4 khi x bằng -0,5

Bùi Anh Tuấn
17 tháng 12 2017 lúc 16:43

4,4375

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Nguyễn Trường Giang
Xem chi tiết
Huỳnh Quang Sang
30 tháng 9 2020 lúc 19:16

a) Vì \(\hept{\begin{cases}\left|4x-3\right|\ge0\forall x\\\left|5y+7\right|\ge0\forall y\end{cases}}\Rightarrow\left|4x-3\right|+\left|5y+7\right|\ge0\forall x,y\)

=> \(\left|4x-3\right|+\left|5y+7\right|+17,5\ge17,5\forall x\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-\frac{7}{5}\end{cases}}\)

Vậy GTNN là 17,5 khi x = 3/4,y = -7/5

b) \(2\left|3x-1\right|-4\)

Vì |3x - 1| \(\ge\)\(\forall\)x

=> 2|3x - 1| - 4 \(\ge\)-4\(\forall\)x

Dấu " = " xảy ra khi và chỉ khi |3x - 1| = 0 => x = 1/3

Vậy GTNN là -4 khi x = 1/3

c) Đây là GTLN mà ?

Vì \(\hept{\begin{cases}\left|5-2x\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5-2x\right|-\left|3y+12\right|\ge0\forall x,y\)

=> \(4-\left|5-2x\right|-\left|3y+12\right|\le4\forall x,y\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|5-2x\right|=0\\\left|3y+12\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-4\end{cases}}\)

Vậy GTLN là 4 khi x = 5/2,y = -4

Khách vãng lai đã xóa
Thiên Ân
Xem chi tiết
ST
12 tháng 7 2018 lúc 18:44

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

Hường Nguyễn Thị
Xem chi tiết
Nông Duy Khánh
Xem chi tiết
Hiền Thảo Bùi
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết