Chứng minh rằng:
\(\frac{a^2+b^2}{b^2+c^2}^{ }=\frac{a}{c}\) nếu \(b^2=ac\)
DÚP MK NHA
1) BIẾT a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một .Chứng minh ƯCLN( abc ; ab+bc+ca ) = 1
2) chứng minh rằng nếu a,b,c thỏa mãn bất đẳng thức \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}...\)thì /a/ = /b/ = /c/
dấu / / là giá trị tuyệt đối nha mk cần gấp các bạn cố giúp mk
Cho các số hữu tỉ \(\frac{a}{b}\) , \(\frac{c}{d}\) (b,d > 0)
Chứng minh rằng: nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
DÚP MK VỚI NHA MẤY BẠN, MK CHUẨN BỊ KT TOÁN 1 TIẾT
Do \(\frac{a}{b}< \frac{c}{d}\Rightarrow a.d< b.c\)
=> a.d + a.b < b.c + a.b
=> a.(b + d) < b.(a + c)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
CM \(\frac{a+c}{b+d}< \frac{c}{d}\)Do \(\frac{a}{b}< \frac{c}{d}\Rightarrow a.d< b.c\)
=> a.d + c.d < b.c + c.d
=> d.(a + c) < c.(b + d)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
xin lỗi, mình nhầm chỗ này, cho mình sửa lại nha
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Suy ra:
+) \(ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
+) \(ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\frac{a+b}{b+d}< \frac{c}{d}\) (2)
(1),(2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt
(hồi nãy mình nhầm chút xíu)
Trả lời:
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Suy ra:
+) \(ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
+) \(ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\frac{a+c}{b+1}< \frac{c}{d}\) (2)
(1),(2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt
Chứng minh rằng nếu \(c^2+2\left(ab-ac-bc\right)=0\) với \(b\ne c\) và \(\left(a+b\right)\ne c\) thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
m.n giúp mk nha!!!
Chứng minh rằng nếu: \(\frac{c^2}{2}=-ab+ac+bc\) với \(b\ne c\)và \(a+b\ne c\)thì
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)= \(\frac{a-c}{b-c}\)
Giups mk vs! Ai đug mk cho 3 t
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)( 2 cách nha mn)
Cách 1:
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{c^2}{d^2}\) (1)
\(\frac{c}{d}=\frac{a}{b}.\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right).\)
Cách 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Có:
\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\) (1)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)
Từ (1) và (2) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right).\)
Chúc bạn học tốt!
CHỨNG MINH RẰNG NẾU:\(\frac{a}{b}=\frac{b}{c}thì\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Ta có a/b =b/c
=> a^2/b^2=a/b.a/b= a/b.b/c=a/c(1)
Lại có a/b=b/c
=> a^2/b^2=b^2/c^2=a^2+b^2 / b^2+c^2 (t/c dãy tỉ số = nhau) (2)
Từ (1),(2) => a/c=a^2+b^2 / b^2+c^2
Ta có \(\frac{a}{b}=\frac{b}{c}\)=> \(\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2\)
=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)mà \(\frac{a}{b}=\frac{b}{c}\)
=> \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)
Áp dung tính chất của dãy tỉ bằng nhau , ta có :
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{c}=\frac{a}{c}\)( điều phải chứng minh )
Vậy ...............
Cho a,b,c > 0 . Chứng minh rằng
\(\sqrt{\frac{a}{b+c}}\:+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\:>2\)>2
Ai trl đc mk tick chi nha :)))
Ta có: \(\sqrt{\frac{b+c}{a}}\le\frac{1+\frac{b+c}{a}}{2}=\frac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)
Dấu "=" xảy ra khi a=b=c=0 (trái gt)
\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)(đpcm)
Bài 1,\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\). Chứng minh rằng: \(\frac{a}{b}=\frac{5}{6}\)
Bài 3, Bốn số a, b,c,d thỏa mãn điều kiện:\(b^2=ac;c^2=bd.\)Chứng minh:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2, Chứng minh rằng nếu: \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
đề nào và mình ghi sai thứ tự bài
bài 1 thiếu cho ở đàu
Chứng minh rằng nếu (a2-bc)(b-abc)=(b2-ac)(a-abc)= các số a,b,c,a-b khác 0 thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)