Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Học 24h
Xem chi tiết
can thi thu hien
Xem chi tiết
đô rê mon
Xem chi tiết
Minh Tam Nguyen
Xem chi tiết
Trần Đức Thắng
14 tháng 8 2015 lúc 13:25

a) TA có :

\(\left(x^2+cx+2\right)\left(ax+b\right)=ax^3+bx^2+acx^2+bcx+2ax+2b\)

\(=ax^3+x^2\left(b+ac\right)+x\left(bc+2a\right)+2b\) = \(=x^3-x^2-2\)

=> a = 1 

=>\(2b=-2\Rightarrow b=-1\)

=> b + ac = -1 => -1 + 1.c = -1 => -1 + c = -1 => c = -1 + 1 = 0 

VẬy a = 1 ; b = -1 ; c = 0 

MIGHFHF
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Trợ Giúp về Toán
29 tháng 10 2018 lúc 2:54

a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz

                  = x.(a+b+c) + y.(a+b+c) + z.(a+b+c)

                  = (a+b+c).(x+y+z) (1)

Lại có: a + b + c = -3 (2)

            x + y + z = -6 (3)

Từ (1) ; (2) ; (3) => A = -3.(-6) = 18

           Vậy A = 18

b) B = ax - bx - cx - ay + by + cy - az + bz +cz

       = x.(a-b-c) - y.(a-b-c) - z.(a-b-c)

       = (a-b-c).(x-y-z)

Lại có: a - b - c = 0 ; x - y - z = 2016

=> B = 0.2016 = 0

Vậy B = 0

pham Hương
Xem chi tiết
Hà Trần Minh Châu
Xem chi tiết
Nguyễn Bảo Tâm An
28 tháng 2 2021 lúc 16:31

a) 

Ta có xAy^<xAZ^ ( do 500<700 )

⇒Ay nằm giữa Ax;Az

b)

Vì Ay nằm giữa Ax;Az

⇒xAy^+yAz^=xAz^

⇒yAz^=xAz^-xAy^=700-500=200 

Khách vãng lai đã xóa
Tran Thi Xuan
Xem chi tiết
Võ Thị Quỳnh Giang
18 tháng 8 2017 lúc 15:32

1) pp: biến đổi tương đương

ta có: VT= \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)

        = \(\left(ax\right)^2+\left(ay\right)^2+\left(az\right)^2+\left(bx\right)^2+\left(by\right)^2+\left(bz\right)^2+\left(cx\right)^2+\left(cy\right)^2+\left(cz\right)^2\)     (*)

VP=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)

=\(\: \left(ax\right)^2+\left(by\right)^2+\left(cz\right)^2+2\left(axby+bycz+czax\right)+\left(bz\right)^2+\left(cy\right)^2+\left(cx\right)^2+\left(az\right)^2\)

\(+\left(ay\right)^2+\left(bx\right)^2-2\left(bzcy+cxaz+aybx\right)\)   (**)

Từ (*),(**)=> VT-VP=0=> VT=VP=> \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+x^2\right).\)=\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)+\left(bz-cy\right)^2+\left(cx-az\right)^2+\left(ay-bx\right)^2\)   (đpcm)

Võ Thị Quỳnh Giang
18 tháng 8 2017 lúc 15:41

2) áp dụng BĐT Schwartz ta có: 

\(\left(a+b+c\right)^2\le\left(1+1+1\right)\left(a^2+b^2+c^2\right)\)

=>\(2010^2\le3\left(a^2+b^2+c^2\right)\)  (vì a+b+c=2010)

=>\(a^2+b^2+c^2\ge\frac{2010^2}{3}=1346700\)

Dấu '=' xảy ra khi: a=b=c

Vậy GTNN của a^2 +b^2 +c^2 là 1346700 khi a=b=c