Chứng minh :
a chia hết cho m
b chia hết cho m
thì a + b chia hết cho m
Chứng minh rằng :( Chứng minh đầy đủ )
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.
Áp dụng công thức
- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết
Lên anh Google ý
Anh Google bảo : tao sinh ra cho chúng mày ngắm ak
Chứng minh rằng :( Chứng minh đầy đủ )
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chứng minh rằng:
a) Nếu a chia hết cho m, a+b chia hết cho m thì b chia hết cho m
b) Nếu a chia hết cho m, a-b chia hết cho m thì b chia hết cho m
Chứng minh rằng :
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chứng minh rằng :
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chứng minh rằng nếu a chia hết cho m ,b chia hết cho m,a+b+c chia hết cho m thì c chia hết cho m
Theo bài ra ta có :
a = m.k ; b = m.n; a + b + c = m.d (k; n; d \(\in\) Z)
⇒ c = m.d - (a+b)
⇒a + b = m.k + m.n = m(k+n)
Thay a + b = m(k+n) vào biểu thức c = m.d - (a+b) ta có:
c = m.d - m(k+n)
c = m.( d-k-n) Vì d,k,n \(\in\) Z nên => c ⋮ m (đpcm)
Chứng minh : Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
a chia hết cho m=> a =m.q
b chia hết cho m => b =m.p
=>a+b =mq+mp = m(q+p) chia hết cho m
chứng minh rằng nếu a chia hết cho m ; b chia hết cho m va a+b+c khong chia hết m thì c khong chia hết cho m
ta có một phép tính ví dụ 2CH 2;4CH2 mà3 KC2 nên2c4c3KCm
bạn cho mình sao nhé
CH là chia hết còn KH là không chia hết
Chứng minh : Nếu a chia hết cho m , b không chia hết cho m thì ( a+b ) không chia hết cho m
a chia hết cho m => a =mq
b không chia hết cho m => b =m.p+r với r < m
=>a+b =mq+mp+r =m(q+p) +r => a+b khoog chia hết cho m
chứng minh nếu a,b chia hết cho m và a+b+c chia hết cho m thì c chia hết cho m
= B cận thận sai nhé
ai chơi freefire thì kb với mình
Theo bài, ta có: \(\hept{\begin{cases}a,b⋮m\left(1\right)\\a+b+c⋮m\left(2\right)\end{cases}}\)
Từ (1) \(\Rightarrow a+b⋮m\)(3)
Trừ (2) cho (3) ta được: \(\left(a+b+c\right)-\left(a+b\right)⋮m\)
\(\Rightarrow a+b+c-a-b⋮m\)\(\Rightarrow c⋮m\)( đpcm )