Những câu hỏi liên quan
Ruby Sweety
Xem chi tiết
ducchinhle
26 tháng 8 2018 lúc 20:30

với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn

=> Không thể CM

Bình luận (0)
I don
26 tháng 8 2018 lúc 20:47

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)

\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)

\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)

\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Làm tương tự như trên. ta có:

\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)

Bình luận (0)
Phạm Đức Nghĩa( E)
Xem chi tiết
mi ni on s
8 tháng 3 2018 lúc 19:21

        \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Leftrightarrow\)\(\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\)

\(\Leftrightarrow\)\(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-zx\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right)\left(y^2-zx\right)}=\frac{bc}{\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{ca}{\left(z^2-xy\right)\left(x^2-yz\right)}\left(1\right)\)

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{a^2-bc}{x\left(x^3+y^3+z^3-3xyz\right)}\)   (2)

\(\frac{b^2}{\left(y^2-zx\right)^2}=\frac{ac}{\left(x^2-yz\right)\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-zx\right)^2-\left(x^2-yz\right)\left(z^2-xy\right)}=\frac{b^2-ca}{y\left(x^3+y^3+z^3-3xyz\right)}\)   (3)

\(\frac{c^2}{\left(z^2-xy\right)}=\frac{ab}{\left(x^2-yz\right)\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)-\left(x^2-yz\right)\left(y^2-xz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)     (4)

Từ  (1),  (2), (3), (4)   suy ra:

\(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)

P/S: mk mới lớp 8 nên cx ko bít lm đúng hay sai, bn tham khảo thôi nhé

Bình luận (0)
Nguyễn Thiều Công Thành
Xem chi tiết
yen hoa
Xem chi tiết
Lê Thị Trà MI
Xem chi tiết
Thằn Lằn
Xem chi tiết
I don
15 tháng 6 2018 lúc 18:31

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

Bình luận (0)
Trần Nguyễn Khánh Linh
Xem chi tiết
Trần Hữu Ngọc Minh
20 tháng 10 2017 lúc 16:47

vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi

bài 1

\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)

\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
Kiệt Nguyễn
26 tháng 4 2020 lúc 8:22

Bài 2 là chuyên Bình Thuận, 2016-2017

Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:

\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)

Cộng từng vế của 3 BĐT trên. ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)

Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
vũ quỳnh trang
Xem chi tiết
vũ quỳnh trang
Xem chi tiết
tthnew
5 tháng 7 2019 lúc 9:58

Em(mình) thử nhé, ko chắc đâu

3/ Ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)

\(=\left[ab\left(a+b\right)+abc\right]+\left[bc\left(b+c\right)+abc\right]+\left[ca\left(c+a\right)+ca\right]-abc\)

\(=\left(a+b+c\right)ab+\left(a+b+c\right)bc+\left(a+b+c\right)ca-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)= -abc

Suy ra \(P=\frac{-abc}{abc}=-1\)

Vậy..

Bình luận (0)