Cho B= 23! + 19! - 15!. Chứng minh rằng
a, B chia hết cho 11
b, B chia hết cho 110
Cho B= @23! +19! - 15!.Chứng minh rằng:
a,B chia hết cho 11
b,B chia hết cho 110
Chứng minh rằng
a) ab + ba chia hết cho 11
b) ab - ba chia hết cho 9 với a > b
a) \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11.\left(a+b\right)\)
Vì 11⋮11 nên \(\overline{ab}+\overline{ba}\)⋮11
b) \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=10a+b-10b-a=9a-9b=9.\left(a-b\right)\)
Vì 9⋮9 nên với \(a>b\) thì \(\overline{ab}-\overline{ba}⋮9\)
a)ab+ba
=a.10+b.1+b.10+a.1
=a.10+a.1+b.10+b.1
=a.(10+1)+b.(10.1)
=a.11+b.11
=11.(a+b)⋮11(vì 11⋮11)
b)ab - ba
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
cho B =23!+19!-15!.Chứng minh rằng :
a)B chia hết cho 11.
b)B chia hết cho 110.
a)B =23!+19!-15!.
vì 23 ! , 19! ,15! đều B chia hết cho 11 => 23!+19!-15!. chia hết cho 11 hay B chia hết cho 11
b) tương ự như a)
Cho B=23!+19!-15!
Chứng minh rằng B chia hết cho 11
chia hết cho 110
chia hết cho 5
+, Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times11\times...\times23\right)+\left(1\times2\times...\times11\times...\times19\right)-\left(1\times2\times...\times11\times...\times15\right)\)
\(B=11\times\left[\left(1\times2\times...\times10\times12\times...\times23\right)+\left(1\times2\times...\times10\times12\times...\times19\right)-\left(1\times2\times...\times10\times12\times...\times15\right)\right]\)
\(\Rightarrow B⋮11\)
+, Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times10\times11\times...\times23\right)+\left(1\times2\times...\times10\times11\times...\times19\right)-\left(1\times2\times...\times10\times11\times...\times15\right)\)
\(B=11\times10\times\left[\left(1\times2\times...\times9\times12\times...\times23\right)+\left(1\times2\times...\times9\times12\times...\times19\right)-\left(1\times2\times...\times9\times12\times...\times15\right)\right]\)
\(B=110\times\left[\left(1\times2\times...\times9\times12\times...\times23\right)+\left(1\times2\times...\times9\times12\times...\times19\right)-\left(1\times2\times...\times9\times12\times...\times15\right)\right]\)
\(\Rightarrow B⋮110\)
+,Ta có:
\(B=23!+19!-15!\)
\(B=\left(1\times2\times...\times5\times...\times23\right)+\left(1\times2\times...\times5\times...\times19\right)-\left(1\times2\times...\times5\times...\times15\right)\)
\(B=5\times\left[\left(1\times2\times...\times4\times6\times...\times23\right)+\left(1\times2\times...\times4\times6\times...\times19\right)-\left(1\times2\times...\times4\times6\times...\times15\right)\right]\)
\(\Rightarrow B⋮5\)
~ Chúc bạn học tốt ~!
cho B=23!+19!-15!
a)chứng minh rằng
b)B chia hết cho 11
c)13 chia hết cho 110
Cho 23!+ 19! - 15! Chứng tỏ rằng B chia hết cho 11 , B chia hết cho 110, Chứng tỏ rằng 53! -51!chia hết cho 29
Thanks
B = 23! + 19! - 15!
Chứng minh a) B chia hết cho 11
b) B chia hết cho 110
Chứng minh rằng :
B=23! + 19! - 15! chia hết cho 110
23! =1.2.3.4.5.6.7.8.9.10.11. ........ chia hết cho 10,11 hay chia hết cho 110
19!=1.2.3.4.5.6.7.8.9.10.11. ......... chia hết cho 10,11 hay chia hết cho 110
15! = 1.2.3.4.5.6.7.8.9.10.11. ....... chia hết cho 10,11 hay chia hết cho 110
Hay 23! +19! -15! chia hết cho 110
Hay B chia hết cho 110
Vậy B chia hết cho 110
cho 23! + 19! - 15! . Chứng minh rằng
a) P chia hết cho 11
b) P chia hest cho 110
Ta có công thức sau:
Nếu a chia hết cho m,b chia hết cho m thì ﴾a+b﴿ chia hết cho m
Đối với số trừ cũng vậy
Ta có:
P=23!+19!‐15!. Vậy B=﴾1.2.3.4.5.vv.10.11.vv.23﴿+﴾1.2.3.4.vv.10.11.vv.19﴿‐﴾1.2.3.vv.10.11.vv.15﴿
a,Ta thấy: 23! chia hết cho 11, 19!chia hết cho 11, 15!chia hết cho 11 . Vậy 23!+19! ﴾giả sử =A﴿ chia hết cho 11 nên A‐15! chia hết cho 11. Vậy P chia hết cho 11
b,Ta thấy: 23!, 19!, 15! đều chia hết cho 10,11 hay đều chia hết cho 110. Vậy áp dụng như phần a, P chia hết cho 11
NHỚ TK MK NHA