Tìm a,b thuộc Z thoả
\(\frac{a}{7}\)-\(\frac{1}{2}\)=\(\frac{1}{b+1}\)
tìm a,b thuộc Z thoả mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a.b}\)
\(\frac{1}{a}-\frac{1}{b}=\frac{b}{ab}-\frac{a}{ab}=\frac{b-a}{ab}=\frac{1}{ab}\Rightarrow b-a=1\)
vậy với \(a;b\in Z\)sao cho b=a+1 thì \(\frac{1}{a}-\frac{1}{b}=\frac{1}{ab}\)
1/a-1/b=b-a/ab=1/ab
Do đó ab(a-b)=ab, nên b-a=ab:ab
=>b-a=1
=>b=a+1
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{ab}\)
\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{ab}\)
<=> b - a = 1
=> a và b là hai số nguyên liên tiếp thì thỏa mãn đề bài
Cho a,b,c thuộc N*
Thoả mãn\(1=\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tìm giá trị nhỏ nhất của a+b+c
Tìm a,b thuộc Z thỏa
\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)
Cho A=(\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+7}{x}\)
a, Rút gon A
b, Tìm x thuộc Z để A thuộc Z
a. \(A=\left[\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right].\frac{x+7}{x}\)
\(=\left[\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right].\frac{x+7}{x}\)
\(=\frac{x^2-1}{x^2-1}.\frac{x+7}{x}\)
\(=\frac{x+7}{x}\)
b. Để A \(\in\)Z thì \(\frac{x+7}{x}\in Z\)
=> x+7 chia hết cho x
Mà x chia hết cho x
=> 7 chia hết cho x
=> x \(\in\)Ư(7)={-7; -1; 1; 7}
Vậy x \(\in\){-7; -1; 1; 7} thì A \(\in\)Z.
Hoàng Bảo Ngọc trình bày cách làm cho tau với
ae ơi....mai mik đik hk rồi...ai lm giúp mik vs.
1) Cho \(a=x+\frac{1}{x};b=y+\frac{1}{y};c=z+\frac{1}{z};z=xy\)
Tính \(M=a^2+b^2+c^2-abc\)
2) Tìm a,b,c thoả mãn: \(a^2+\frac{1}{b^2}=a^3+\frac{1}{b^3}=a^4+\frac{1}{b^4}\)
ui mk bó tay vì chưa hok đến lóp 9!!! ^^
54746767765858578758788974686865876546456475675685785
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
1, Tìm x, y thuộc Z:
a, \(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
b, \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
c, \(\frac{2}{y}-\frac{1}{x}=\frac{8}{x\cdot y}+1\)
2, Tìm a, b, c thuộc N:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{3}\)
Cho mình sửa lại đề câu 1b: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{x}{7}-\frac{1}{2}=\frac{1}{y+1}\)
\(\frac{2x-7}{14}=\frac{1}{y+1}\)
\(TH1:\hept{\begin{cases}2x-7=7\\y+1=2\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x-7=-7\\y+1=-2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
nhớ cho
a,Tìm a,b,c thuộc Z sao cho \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
b,Tìm a,b thuộc N biết \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
c,Tìm a,b,c thuộc N biết \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)