Tìm số dư của 52013 khi chia cho 7
a. Tìm số tự nhiên nhỏ nhất khác 5 khi chia số đó cho 70 , 140 , 350 , 700 đều dư 5
b. Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 1 chia cho 5 dư 3 và chia cho 7 dư 5
c. Tìm số tự nhiên nhỏ nhất khi chia cho 5 dư 1 , chia cho 7 dư 5
d. Tìm số tự nhiên a nhỏ nhất, biết rằng a chia cho 5,7,9 thì số dư lần lượt là 3,4,5
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
một số khi chia cho 7 thì dư 3 chia cho 8 dư 7 chia cho 11 dư 8 tìm số dư khi chia số đó cho 616
tìm số tự nhiên khi chia 7 dư 6, chia 8 dư 7.Vấy số dư của số đó khi chia cho 56 là bao nhiêu
Một số tự nhiên khi chia cho 7 dư 3 , chia cho 17 dư 12 , chia cho 23 dư 7. Tìm số dư khi chia số đó cho
chia cho mấy vậy
Một số tự nhiên khi chia cho 11 dư dư 3, chia cho 7 dư 6.Tìm số dư của phép chia đó số đó cho 77
Gọi số tự hiên đó là x ta có
x chia 11 dư 3
=> x-3 chia hết cho 11
=> x-3 +11 chia hết cho 11
=> x+8 chia hết cho 11 (1)
x chia 7 dư 6
=> x-6 chia hết cho 7
=> x-6 +14 chia hết cho 7
=> x+8 chia hết cho 7 (2)
Từ (1) và (2)
=> x+8 chia hết cho 77
=> x chia 77 dư 69
KL
Khi chia số a cho 7 được số dư là 5 , khi chia số b cho 7 thì được số dư là 4 . Tìm số dư khi a+b rồi chia 7
Một số tự nhiên khi chia cho 7 dư 3 , chia cho 17 dư 12 , chia cho 23 dư 7 . Tìm số dư khi chia số đó cho 2737
GỌI SỐ TỰ NHIÊN CHIA CHO 7 DƯ 3, CHO 17 DƯ 12, CHO 23 DƯ 7 LÀ a
THEO BÀI RA, TA CÓ: \(a=7q+3=17p+12=23y+7\)( TRONG ĐÓ \(q,p,y\)LÀ THƯƠNG CỦA CÁC PHÉP CHIA)
\(\Rightarrow a+39=7q+42=7\cdot\left(q+6\right)\left(1\right)\)
\(a+39=17p+51=17\cdot\left(p+3\right)\left(2\right)\)
\(a+39=23y+46=23\cdot\left(y+2\right)\left(3\right)\)
TỪ\(\left(1\right),\left(2\right)\&\left(3\right)\Rightarrow a+39\in BC\left(7;17;23\right)\)
TA CÓ: \(7=7;17=17;23=23\)
\(\Rightarrow BCNN\left(7;17;23\right)=7\cdot17\cdot23=2737\)
DO ĐÓ: \(a+39=2737k\left(k\in N\right)\)
\(\Leftrightarrow a=2737k-39\)
\(\Leftrightarrow a=2737\cdot\left(k-1\right)-2698\)
VẬY PHÉP CHIA a CHO 2737 CÓ SỐ DƯ LÀ 2698
ko ai trả lời cho mày đâu
Kiến thức: dư thì phải bớt
Bài giải
Gọi x là số đó (x thuộc N*)
Theo đề bài: x - 3\(⋮\)7 ; x - 12\(⋮\)17 và x - 7\(⋮\)23
Suy ra x - 3 - 12 - 7 = x - 22 thuộc BC (7; 17; 23)
7 = 7
17 = 17
23 = 23
BCNN (7; 17; 23) = 7.17.23 = 2737
BC (7; 17; 23) = B (2737) = {0; 2737; 5474;...}
Mà x thuộc N*
Nên x - 22 thuộc {2737; 5474;...}
Vì 2737\(⋮\)2737 nên B (2737)\(⋮\)2737
Mà x - 22 (x thuộc N*) = B (2737)
Nên x - 22 chia 2737 dư 22
Vậy khi số đó chia cho 2737 thì luôn có số dư là 22.
Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.
Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.
Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.
Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.
Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.
Bài 1
a) Tìm số dư trong phép chia 4.10mux100+1 khi chia cho 3
b) Tìm số dư trong phép chia 1+2+3+4+...+99+100 khi chia cho 9
c) Tìm số dư của phép chia 1+3+5+7+...+17+19 khi chia cho 2
Một số khi chia cho 6 dư 4 khi chia cho 7 dư 6 khi chia 11 dư 3. tìm số dư cho phép chia đó cho 642