\(\left(\frac{3}{4}-0,2\right)+\left(0,4-\frac{4}{5}\right)\)
Tính:
a)\(\left\{\left[\left(6,2:0,31-\frac{5}{6}.0,9\right).0,2+0,15\right]:0,2\right\}:\left[\left(2+1\frac{4}{11}:0,1\right).\frac{1}{33}\right]\)
b)\(0,4\left(3\right)+0,6\left(2\right)-2\frac{1}{2}.\left[\left(\frac{1}{2}+\frac{1}{3}:0,5\left(8\right)\right)\right]:\frac{50}{53}\)
c)\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}\)
c) \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{5\left(0,123-0,1+\frac{1}{11}+\frac{1}{12}\right)}=\frac{3}{5}\)
bài 14 : Tính giá trị của các biểu thức A,B,C rồi sắp xếp các kết quả tìm được theo thứ tự từ nhỏ đến lớn :
A= \(\frac{2}{3}+\frac{3}{4}.\left(\frac{-4}{9}\right)\)
B= \(2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)
C= \(\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)\)
\(A=\frac{1}{3}\)
\(B=\frac{25}{11}.\frac{13}{12}.\left(-2,2\right)=\frac{-65}{12}\)
\(C=\frac{11}{20}.\left(-\frac{2}{5}\right)=-\frac{11}{50}\)
tự sắp xếp nha
A= 2/3 +3/4 . -4/9
= 2/3 - 1/3
= 1/3
B=\(2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)
= 25/11.13/12.-11/5
= (25/11.-11/5).13/12
= -5 . 13/12
= -65/12
C= (3/4-0,2)(0,4-4/5)
= (0,75 - 0,2)( 0,4 - 0,8)
= 0,55 . -0,4
= -0,22 = -11/50
Ta có: A= 1/3 ; B=-65/12 ; C= -11/50
=> -65/12 < -11/50 < 0
Mà 1/3 > 0 => -65/ 12 < -11/50 < 1/3
Vậy b<c<a
\(A=\frac{2}{3}+\frac{3}{4}.\left(-\frac{4}{9}\right)\)
\(=\frac{2}{3}.\left(-\frac{1}{3}\right)\)
\(=-\frac{2}{9}\)
\(B=2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)
\(=\frac{25}{11}.\frac{13}{12}.\left(-\frac{11}{5}\right)\)
\(=\frac{325}{132}.\left(-\frac{11}{5}\right)\)
\(=-\frac{65}{12}\)
\(C=\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)\)
\(=\frac{11}{20}.\left(-\frac{2}{5}\right)\)
\(=-\frac{11}{50}\)
Giá trị của các biểu thức sắp sếp từ nhỏ đến lớn là:
B<C<A
hay: \(-\frac{65}{12}< -\frac{11}{50}< -\frac{2}{9}\)
^...^ ^_^
tính gía trị của biểu thức A , B , C rồi xắp xếp các kết quả tìm được theo thứ tự từ nhỏ đến lớn
\(A=\frac{2}{3}+\frac{3}{4}.\left(-\frac{4}{9}\right)\)
\(B=2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)\)
\(C=\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)\)
\(A=\frac{2}{3}+\frac{3}{4}.\left(-\frac{4}{9}\right)=\frac{2}{3}+-\frac{1}{3}=\frac{1}{3}\)
\(B=2\frac{3}{11}.1\frac{1}{12}.\left(-2,2\right)=\frac{25}{11}.\frac{13}{12}.\left(-\frac{11}{5}\right)=\frac{325}{132}.\left(-\frac{11}{5}\right)=-\frac{65}{12}\)
\(C=\left(\frac{3}{4}-0,2\right).\left(0,4-\frac{4}{5}\right)=\left(\frac{3}{4}-\frac{1}{5}\right).\left(\frac{2}{5}-\frac{1}{5}\right)=\frac{11}{20}.\frac{1}{5}=\frac{11}{100}\)
Từ 3 kết quả ta so sánh được:
Vì: \(-\frac{65}{12}
Tính:
a)\(0,75 - \frac{5}{6} + 1\frac{1}{2};\)
b)\(\frac{3}{7} + \frac{4}{{15}} + \left( {\frac{{ - 8}}{{21}}} \right) + \left( { - 0,4} \right);\)
c)\(0,625 + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} + \left( {\frac{{ - 5}}{7}} \right) + 1\frac{2}{3}\)
d)\(\left( { - 3} \right).\left( {\frac{{ - 38}}{{21}}} \right).\left( {\frac{{ - 7}}{6}} \right).\left( { - \frac{3}{{19}}} \right);\)
e) \(\left( {\frac{{11}}{{18}}:\frac{{22}}{9}} \right).\frac{8}{5};\)
g)\(\left[ {\left( {\frac{{ - 4}}{5}} \right).\frac{5}{8}} \right]:\left( {\frac{{ - 25}}{{12}}} \right)\)
a)
\(\begin{array}{l}0,75 - \frac{5}{6} + 1\frac{1}{2} = \frac{3}{4} - \frac{5}{6} + \frac{3}{2}\\ = \frac{9}{{12}} - \frac{{10}}{{12}} + \frac{{18}}{{12}} = \frac{{17}}{{12}}\end{array}\)
b)
\(\begin{array}{l}\frac{3}{7} + \frac{4}{{15}} + \left( {\frac{{ - 8}}{{21}}} \right) + \left( { - 0,4} \right) = \frac{3}{7} + \frac{4}{{15}} - \frac{8}{{21}} - \frac{2}{5}\\ = \left( {\frac{3}{7} - \frac{8}{{21}}} \right) + \left( {\frac{4}{{15}} - \frac{2}{5}} \right)\\ = \left( {\frac{9}{{21}} - \frac{8}{{21}}} \right) + \left( {\frac{4}{{15}} - \frac{6}{{15}}} \right)\\ = \frac{1}{{21}} + \left( {\frac{{ - 2}}{{15}}} \right)\\ = \frac{5}{{105}} - \frac{{14}}{{105}}\\ = \frac{{ - 9}}{{105}} = \frac{{ - 3}}{{35}}\end{array}\)
c)
\(\begin{array}{l}0,625 + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} + \left( {\frac{{ - 5}}{7}} \right) + 1\frac{2}{3}\\ = \frac{5}{8} + \left( {\frac{{ - 2}}{7}} \right) + \frac{3}{8} - \frac{5}{7} + \frac{5}{3}\\ = \left( {\frac{5}{8} + \frac{3}{8}} \right) + \left( {\frac{{ - 2}}{7} - \frac{5}{7}} \right) + \frac{5}{3}\\ = 1 - 1 + \frac{5}{3} = \frac{5}{3}\end{array}\)
d)
\(\begin{array}{l}\left( { - 3} \right).\left( {\frac{{ - 38}}{{21}}} \right).\left( {\frac{{ - 7}}{6}} \right).\left( { - \frac{3}{{19}}} \right)\\ = \frac{{ - 3.\left( { - 38} \right).\left( { - 7} \right).\left( { - 3} \right)}}{{21.6.19}}\\ = \frac{{3.38.7.3}}{{21.6.19}}\\ = \frac{{3.2.19.7.3}}{{3.7.3.2.19}}\\ = 1\end{array}\)
e)
\(\begin{array}{l}\left( {\frac{{11}}{{18}}:\frac{{22}}{9}} \right).\frac{8}{5} = \left( {\frac{{11}}{{18}}.\frac{9}{{22}}} \right).\frac{8}{5}\\ = \frac{{11.9.4.2}}{{9.2.2.11.5}} = \frac{2}{5}\end{array}\)
g)
\(\left[ {\left( {\frac{{ - 4}}{5}} \right).\frac{5}{8}} \right]:\left( {\frac{{ - 25}}{{12}}} \right) = \frac{{ - 20}}{{40}}:\left( {\frac{{ - 25}}{{12}}} \right)\\ = \frac{{ - 1}}{2}.\frac{{ - 12}}{{25}} = \frac{6}{{25}}\)
Trong vở bài tập của bạn Dùng có bài làm sau :
a) \(\left(-5\right)^2.\left(-5\right)^3=\left(-5\right)^6\)
b) \(\left(0,75\right)^3:,75=\left(0,75\right)^2\)
c) \(\left(0,2\right)^{10}:\left(0,2\right)^5=\left(0,2\right)^2\)
d) \(\left[\left(-\frac{1}{7}\right)^2\right]^4=\left(-\frac{1}{7}\right)^6\)
e) \(\frac{50^3}{125}=\frac{50^3}{5^3}=\left(\frac{50}{5}\right)^3=10^3=1000\)
f) \(\frac{8^{10}}{4^8}=\left(\frac{8}{4}\right)^{10-8}=2^2\)
Hãy kiểm ta lại các đáp số và sửa lại chỗ sai (nếu có)
a) \(\left(-5\right)^2\).\(\left(-5\right)^3\) = -3125
12)\(0,2.\frac{15}{36}-\left(\frac{2}{5}+\frac{2}{3}\right):1\frac{1}{5}\)
13)\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+0,25\right).\frac{24}{27}\)
16)\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right).\left(-2,75\right)\)
18)\(\left(\frac{7}{8}-\frac{3}{4}\right).1\frac{1}{3}-\frac{2}{7}.\left(3.5\right)^2\)
22)\(1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{3}\)
23)\(\frac{\left(\frac{2}{3}-0,75\right).\left(0,2-\frac{2}{5}\right)}{\frac{5}{9}-1\frac{1}{12}}\)
33)\(\left(25\%+\frac{1}{3}+0,75\right):\left(4\frac{3}{4}-3\frac{1}{2}\right)\)
35)\(\left(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\right).\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{24}\right)\)
Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa của a:
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) với \(a = - \frac{1}{6}\).
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) với \(a = - 0,2\).
a)\({\left[ {{{\left( { - \frac{1}{6}} \right)}^3}} \right]^4}\) (với \(a = - \frac{1}{6}\))
\(=(- \frac{1}{6})^{3. 4}=(- \frac{1}{6})^{12}\)
b)\({\left[ {{{\left( { - 0,2} \right)}^4}} \right]^5}\) (với \(a = - 0,2\))
\(=(-0,2)^{4.5}=(-0,2)^{20}\)
Tính giá trị các biểu thức.
a)\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}};\)
b)\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}};\)
c)\(\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}};\)
d)\(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}}.\)
a)
\(\frac{{{4^3}{{.9}^7}}}{{{{27}^5}{{.8}^2}}} = \frac{{{{\left( {{2^2}} \right)}^3}.{{\left( {{3^2}} \right)}^7}}}{{{{\left( {{3^3}} \right)}^5}.{{\left( {{2^3}} \right)}^2}}} =\frac{2^{2.3}.3^{2.7}}{3^{3.5}.2^{2.3}}= \frac{{{2^6}{{.3}^{14}}}}{{{3^{15}}{{.2}^6}}} = \frac{1}{3}\)
b)
\(\frac{{{{\left( { - 2} \right)}^3}.{{\left( { - 2} \right)}^7}}}{{{{3.4}^6}}} =\frac{(-2)^{3+7}}{3.(2^2)^6}= \frac{{{{\left( { - 2} \right)}^{10}}}}{{3.{{\left( {{2^{2.6}}} \right)}}}} = \frac{{{2^{10}}}}{{{{3.2}^{12}}}} = \frac{1}{{{{3.2}^2}}} = \frac{1}{{12}}\)
c)
\(\begin{array}{l}\frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,09} \right)}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left[ {{{\left( {0,3} \right)}^2}} \right]}^3}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}} = \frac{{{{\left( {0,2} \right)}^5}.{{\left( {0,3} \right)}^6}}}{{{{\left( {0,2} \right)}^7}.{{\left( {0,3} \right)}^4}}}\\ = \frac{{{{\left( {0,3} \right)}^2}}}{{{{\left( {0,2} \right)}^2}}} = \frac{{0,9}}{{0,4}} = \frac{9}{4}\end{array}\)
d)
Cách 1: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{8 + 16 + 32}}{{49}} = \frac{{56}}{{49}} = \frac{8}{7}\)
Cách 2: \(\frac{{{2^3} + {2^4} + {2^5}}}{{{7^2}}} = \frac{{2^3.(1+2+2^2)}}{{7^2}} = \frac{{2^3.7}}{{7^2}} = \frac{8}{7}\)
Tính một cách hợp lí:
a)\(\left( { - 0,4} \right) + \frac{3}{8} + \left( { - 0,6} \right)\);
b)\(\frac{4}{5} - 1,8 + 0,375 + \frac{5}{8}\).
a)\(\left( { - 0,4} \right) + \frac{3}{8} + \left( { - 0,6} \right) = \left[ {\left( { - 0,4} \right) + \left( { - 0,6} \right)} \right] + \frac{3}{8} = - 1 + \frac{3}{8} = \frac{{ - 5}}{8}\).
b)
\(\frac{4}{5} - 1,8 + 0,375 + \frac{5}{8} = (0,8 - 1,8) + (0,375 + 0,625) = ( - 1) + 1 = 0\)