Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cuồng Song Joong Ki
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 10 2016 lúc 10:46

3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)

\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)

Dấu "=" xảy ra khi a = b = 2

Vậy Min P = 17 <=> a = b = 2

Nguyễn Mỹ Hạnh
Xem chi tiết
Phạm Thế Mạnh
23 tháng 2 2016 lúc 17:18

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{1}{4}\Rightarrow\frac{2}{a^2+b^2}+\frac{1}{ab}\ge\frac{1}{2}\)
\(\frac{32}{ab}+2ab\ge2\sqrt{64}=16\)(cô-si)
tự xét nốt 2/ab nhé

Ko cần bít
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 7 2018 lúc 20:28

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)

\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)

\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)

\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)

Nên GTNN của P là 17 đạt được khi a=b=2

Ko cần bít
Xem chi tiết
Nguyễn Hoàng Liên
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 6 2016 lúc 19:27

Ta có : \(4\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le4\)

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bạn có thể chứng minh bằng biến đổi tương đương)

Ta có :\(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=\left(\frac{2}{a^2+b^2}+\frac{1}{ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}\ge\frac{2.4}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\ge\frac{8}{4^2}+2.8+\frac{2}{4}=17\)Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a^2b^2=16\\0< a+b\le4\end{cases}\Leftrightarrow}a=b=2\)

Vậy \(MinP=17\Leftrightarrow a=b=2\)

Phan hữu Dũng
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
alibaba nguyễn
11 tháng 12 2016 lúc 16:04

Đầu tiên ta chứng minh bổ đề. 

Ta có

\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)

\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)

\(\Rightarrow a^6b^4c^2\le3^3.2^2\)

Ta lại có:

\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)

\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)

\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)

\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)

lê thị thu huyền
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Kudo Shinichi
6 tháng 10 2019 lúc 16:15

\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)

\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)

\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)

\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)

Chúc bạn học tốt !!!