Tính
(1^2-1000)(2^2-1000).....(101^2-1000)
101/1000^2+1 + 101/1000^2+2 + ... + 101/1000^2+1000
Cái này là a) \(\frac{101}{1000^2+1}\) hay là b)\(\frac{101}{1000^2}+1\)vậy nhỉ?
cái này em ko biết nha em lớp 4
Tính
(1^2-1000)(2^2-1000).....(101^2-1000)
Tính
( 1^2- 1000)(2^2 - 1000) -... (101^2 - 1000)
2)
Tính
(12-1000)(22-1000).....(1012-1000)
các bạn giúp mình với
(12-1000)(22-1000).....(1012-1000)
giúp mình với
Tính nhanh;
a) 1/1000 + 13/1000 +25/1000 + 37/1000 +49/1000 +....+87/1000 +99/1000
b) 2/1x2 +2/2x3 +2/3x4+ 2/4x5 +......+ 2/19x20 + 2/20x21
Giúp mk với, đúng mk tick cho
help me , pls
A = (1 + 1999/1)(1 + 1999/2)......(1 + 1999/1000)
B = ( 1 + 1000/1)(1 + 1000/2)......(1 + 1000/1999)
Tính A/B
\(A=\left(1+\dfrac{1999}{1}\right)\left(1+\dfrac{1999}{2}\right)...\left(1+\dfrac{1999}{1000}\right)\)
\(=\dfrac{2000}{1}.\dfrac{2001}{2}.\dfrac{2002}{3}...\dfrac{2999}{1000}\)\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}\)
\(B=\left(1+\dfrac{1000}{1}\right)\left(1+\dfrac{1000}{2}\right)...\left(1+\dfrac{1000}{1999}\right)\)
\(=\dfrac{1001}{1}.\dfrac{1002}{2}.\dfrac{1003}{3}...\dfrac{2999}{1999}\) \(=\dfrac{1001.1002.1003...2999}{1.2.3...1999}\)
\(\Rightarrow A:B=\left(\dfrac{2000.2001.2002...2999}{1.2.3...1000}\right):\left(\dfrac{1001.1002.1003...2999}{1.2.3...1999}\right)\)
\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}.\dfrac{1.2.3...1999}{1001.1002.1003...2999}\)
\(=\dfrac{2000.2001.2002...2999}{1.2.3...1000}.\dfrac{1.2.3...1000.\left(1001.1002...1999\right)}{1001.1002.1003....1999.\left(2000.2001.2002.2999\right)}\)\(=\dfrac{1.2.3...1000}{1.2.3...1000}=1\)
Vậy \(\dfrac{A}{B}=1\)
A=(1+1999/1).(1+1992/2).(1+1999/3)...(1+1999/1000)/(1+1000/1).(1+1000/2).(1+1000/3)...(1+1000/1999)
Tính A
tính: B=[(1+2012/1)+(1+2012/2)+....+(1+2012/1000)]:[(1+1000/1)+(1+1000/2)+....+(1+1000/2012)]
.